metal-organic compounds

Acta Crystallographica Section C Crystal Structure Communications ISSN 0108-2701

Aluminium(III) amidinates formed from reactions of 'AICI' with lithium amidinates

Dennis H. Mayo,^a* Yang Peng,^b Peter Zavalij,^b Kit H. Bowen^c and Bryan W. Eichhorn^b*

^aIndian Head Division, Naval Surface Warfare Center, 4104 Evans Way, Suite 102, Indian Head, MD 20640, USA, ^bDepartment of Chemistry and Biochemistry, Chemistry Building 094, University of Maryland, College Park, MD 20742, USA, and ^cDepartments of Chemistry and Materials Science, Johns Hopkins University, Baltimore, MD 21218, USA

Correspondence e-mail: dmayo1@umd.edu, eichhorn@umd.edu

Received 31 December 2012 Accepted 17 August 2013

The disproportionation of $AlCl(THF)_n$ (THF is tetrahydrofuran) in the presence of lithium amidinate species gives aluminium(III) amidinate complexes with partial or full chloride substitution. Three aluminium amidinate complexes formed during the reaction between aluminium monochloride and lithium amidinates are presented. The homoleptic complex tris(N,N'-diisopropylbenzimidamido)aluminium(III), $[Al(C_{13}H_{19}N_2)_3]$ or $Al\{PhC[N(i-Pr)]_2\}_3$, (I), crystallizes from the same solution as the heteroleptic complex chloridobis-(N,N'-diisopropylbenzimidamido)aluminium(III), [Al(C₁₃- $H_{19}N_2$ or Al{PhC[N(i-Pr)]_2]_2Cl, (II). Both have two crystallographically independent molecules per asymmetric unit (Z' = 2) and (I) shows disorder in four of its N(i-Pr) groups. Changing the ligand substituent to the bulkier cyclohexyl allows the isolation of the partial THF solvate chloridobis(N,N'-dicyclohexylbenzimidamido)aluminium(III) tetrahydrofuran 0.675-solvate, [Al(C₁₉H₂₇N₂)₂Cl]·0.675C₄H₈O or Al[PhC(NCy)₂]₂Cl·0.675THF, (III). Despite having a twofold rotation axis running through its Al and Cl atoms, (III) has a similar molecular structure to that of (II).

Keywords: crystal structure; aluminium(III) amidinates; disorder.

1. Introduction

Metastable aluminium(I) halides are known to undergo disproportionation reactions to form aluminium metal and aluminium trihalides at temperatures above 195 K [equation (1) of Schnoeckel (2010)], *i.e.*

 $3AlCl \rightarrow 2Al + AlCl_3$.

In order to stabilize metalloid aluminium clusters ($Al_nR_mX_y$ or Al_nR_m , where n > m + y), nucleophilic ligand compounds

The majority of ligands used in metalloid aluminium cluster chemistry have been monodentate nitrogen- or oxygen-based species. To study the effect of ligand denticity on metalloid aluminium cluster formation, amidinate ligands were selected for use in the present study. Amidinate and guanidate ligands containing bulky alkyl groups have previously been used to stabilize reduced oxidation state alane derivatives and are known to form crystalline aluminium(III) compounds in the presence of aluminium monohalides (Bonyhady et al., 2010; Dange et al., 2012). Nitrogen-bound alkyl groups of varying steric bulk (isopropyl and cyclohexyl) have been selected in the present study in an attempt to probe the effect of ligand sterics on metal-cluster formation. Lithium amidinates were generated in situ through reaction of phenyllithium with the corresponding carbodiimide reagent (Luo et al., 2002). The reaction of AlCl(THF), (THF is tetrahydrofuran) with lithium amidinates resulted in the formation of three novel aluminium(III) amidinate complexes, (I)-(III) (see Scheme).

2. Experimental

2.1. Synthesis and crystallization

For the preparation of Al{PhC[N(i-Pr)]₂}, (I), and Al{PhC-[N(i-Pr)]₂}₂Cl, (II), Li{PhC[N(i-Pr)]₂} (1.45 g, 7.0 mmol) was dissolved in toluene (10 ml) and cooled to 195 K. To this suspension was added cold AlCl(THF)_n (6.6 mmol, 17.6 ml of

Table 1

Experimental details.

	(I)	(II)	(III)
Crystal data			
Chemical formula	$[Al(C_{13}H_{19}N_2)_3]$	$[Al(C_{13}H_{19}N_2)_2Cl]$	$[Al(C_{19}H_{27}N_2)_2Cl] \cdot 0.675C_4H_8O$
M_r	636.88	469.03	677.95
Crystal system, space group	Orthorhombic, Pccn	Monoclinic, $P2_1/c$	Monoclinic, C2/c
Temperature (K)	150	100	150
a, b, c (Å)	31.286 (3), 33.409 (3), 14.3488 (12)	19.205 (1), 16.4832 (9), 17.8498 (10)	22.042 (4), 16.007 (3), 12.852 (2)
α, β, γ (°)	90, 90, 90	90, 106.287 (1), 90	90, 115.396 (2), 90
$V(\dot{A}^3)$	14998 (2)	5423.8 (5)	4096.6 (12)
Z	16	8	4
Radiation type	Μο Κα	Μο Κα	Μο Κα
$\mu \text{ (mm}^{-1})$	0.09	0.19	0.15
Crystal size (mm)	$0.35 \times 0.30 \times 0.11$	$0.21\times0.20\times0.14$	$0.40 \times 0.34 \times 0.12$
Data collection			
Diffractometer	Bruker SMART APEXII area- detector diffractometer	Bruker SMART APEXII area- detector diffractometer	Bruker SMART APEXII area- detector diffractometer
Absorption correction	Multi-scan (<i>TWINABS</i> ; Sheldrick, 2008)	Multi-scan (TWINABS; Sheldrick, 2008)	Multi-scan (SADABS; Sheldrick, 2008)
T_{\min}, T_{\max}	0.930, 0.990	0.858, 0.973	0.872, 0.982
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	242499, 14753, 10759	100296, 10641, 7375	20863, 4038, 3577
R _{int}	0.086	0.080	0.023
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.617	0.617	0.617
Refinement			
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.050, 0.087, 1.03	0.046, 0.090, 1.00	0.037, 0.082, 1.00
No. of reflections	14753	10641	4038
No. of parameters	901	593	200
No. of restraints	58	0	0
H-atom treatment $\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} \text{ (e Å}^{-3})$	H-atom parameters constrained $0.22, -0.23$	H-atom parameters constrained $0.45, -0.31$	H-atom parameters constrained $0.28, -0.25$

Computer programs: APEX2 and SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), XSHELL (Bruker, 2004) and SHELXL2012 (Sheldrick, 2012).

a 380 mmol solution in toluene–THF, 3:1 v/v) *via* syringe. The resultant brown reaction mixture was warmed to room temperature over the course of 2 h and then heated to 333 K for 16 h. The reaction mixture was subsequently cooled to room temperature and the solvent removed *in vacuo*. Extraction of the brown residue into pentane (50 ml) and filtration *via* cannula resulted in a dark-brown solution. This solution was concentrated to approximately 10 ml, from which colourless blocks of (I) were obtained. Further filtration and concentration of the solution resulted in a few pale-yellow crystals of (II).

For the preparation of Al[PhC(NCy)₂]₂Cl, (III), dicyclohexylcarbodiimide (1.044 g, 5.06 mmol) was dissolved in toluene (10 ml) at room temperature. To this solution was added phenyllithium (5.06 mmol, 2.5 ml of a 2.0 *M* solution in dibutyl ether) and the reaction mixture stirred for 1 h. The resultant yellow solution was cooled to 195 K and cold AlCl-(THF)_n (4.82 mmol, 20 ml of a 240 m*M* solution in toluene– THF, 3:1 v/v) was added quickly *via* syringe. The resultant brown solution was warmed slowly to room temperature overnight. The reaction mixture was subsequently concentrated to *ca* 10 ml, filtered *via* cannula and stored at 258 K for 10 d, after which a few pale-yellow plates of (III) formed on the glass wall.

2.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. All H atoms were posi-

tioned geometrically and refined in riding mode, with C-H = 0.95, 0.98, 0.99, and 1.00 Å for sp^2 , CH_3 , CH_2 , and tertiary C-H, respectively. $U_{iso}(H)$ values were set at $1.5U_{eq}(C)$ for CH_3 groups and at $1.2U_{eq}(C)$ otherwise. Four isopropyl groups in (I) were modelled as disordered over two sites. A total of 58 rigid-bond, equivalent displacement parameter, and distance restraints were required to give a chemically sensible model.

3. Results and discussion

The reaction of AlCl(THF)_n with Li{PhC[N(i-Pr)]₂} gave two separate crystalline products. The initial product formed was the homoleptic aluminium amidinate $Al{PhC[N(i-Pr)]_2}_3$, (I), which crystallized out of the reaction mixture as colourless blocks (Fig. 1). Two crystallographically independent molecules (Z' = 2) with similar core coordination geometries are present within the crystal structure. Each has a central sixcoordinate Al^{III} cation, which is distorted from octahedral geometry due to the demands of bonding to three chelating ligands. The Al-N bond lengths are in the range 1.9826 (15)-2.0344 (15) Å in one molecule and 2.0156 (15)-2.0382 (15) Å in the other (Table 2). Of these, the Al1-N1A bond is noticably shorter than the others. However, as this is one of four N atoms which is bound to a disordered isopropyl group, this may not be chemically significant. The N-C(N) bond lengths in the amidinate ligands are in the ranges 1.320 (2)-1.330 (2) and 1.326 (2)-1.329 (2) Å for the two independent molecules (see Supplementary materials). The Al-N metric

Figure 1

A view of (I), showing the two crystallographically independent molecules and the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms and the isopropyl groups of the minor-disorder components have been omitted for clarity. (Colour key in the electronic version of the paper: aluminium = light blue, carbon = black and nitrogen = blue.)

Table 2				
Selected	bond	lengths	(Å) fo	or (I).

Al1-N1A	1.9826 (15)	Al2 $-N2E$	2.0156 (15)
Al1-N1C	2.0168 (15)	Al2-N1E	2.0185 (15)
Al1 $-N2B$	2.0220 (14)	Al2-N2D	2.0267 (15)
Al1 $-N1B$	2.0299 (14)	Al2-N2F	2.0279 (14)
Al1-N2C	2.0310 (16)	Al2-N1F	2.0295 (15)
Al1 $-N2A$	2.0344 (15)	Al2-N1D	2.0382 (15)

parameters are very similar to those of the homoleptic Al^{III} guanidinate complex reported by Kenney *et al.* (2005); indeed, the bond lengths and angles agree to within ± 0.02 Å and $\pm 1^{\circ}$, respectively (except for the differing guanidinate C–N connectivity).

From the same reaction mixture that formed (I), yellow plates of the heteroleptic Al{PhC[N(i-Pr)]₂}₂Cl complex, (II), formed upon further cooling of the solution (Fig. 2). Again, there are two crystallographically independent (Z' = 2) but geometrically similar molecules present. Differences between

the two molecules are most pronounced in the orientations of the isopropyl substituents. Both display a five-coordinate Al^{III} centre with slightly wider N-Al-N chelate bite angles than those seen in six-coordinate (I) (all approximately 68° , compared with approximately 65.5°). The Al-N bond lengths in (II) are in the ranges 1.9102 (18)-1.9932 (18) and 1.9046 (18)-2.0076 (18) Å, with Al-Cl bond lengths of 2.2046 (8) and 2.2027 (8) Å for the two molecules (Table 3). As expected, the Al-N distances are thus systematically shorter than those in the higher coordination number complex, (I). The N-C(N) bond lengths are in the range 1.317 (3)–1.346 (3) Å and the N– C_{i-Pr} bond lengths are in the range 1.464 (3)-1.477 (3) Å. The bond lengths in (II) are in close agreement with those in the heteroleptic aluminium amidinate Al{MeC[N(i-Pr)]₂]₂Cl reported by Coles et al. (1997). Despite the size and electronic differences between Ph and Me, the structural differences between (II) and Al{MeC[N(i-Pr)]₂]₂Cl are minor, resulting in bond lengths that generally agree to within 0.02 Å.

Figure 2

A view of (II), showing the two crystallographically independent molecules and the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity. (Colour key in the electronic version of the paper: aluminium = light blue, carbon = black, chlorine = green and nitrogen = blue.)

Table 3Selected geometric	parameters (Å,	$^{\circ}$) for (II).	
Al1-N1A	1.9102 (18)	Al2-N2D	1.9046 (18)
Al1-N1B	1.9157 (18)	Al2-N2C	1.9194 (18)
Al1 $-N2B$	1.9791 (18)	Al2-N1D	2.0039 (18)
Al1-N2A	1.9932 (18)	Al2-N1C	2.0076 (18)
Al1-Cl1	2.2046 (8)	Al2-Cl2	2.2027 (8)
N1A-Al1-N1B	122.18 (8)	N2D-Al2-N2C	117.22 (8)
N1A - Al1 - N2B	103.84 (8)	N2D - Al2 - N1D	68.20 (7)
N1B - Al1 - N2B	68.12 (7)	N2C-Al2-N1D	105.37 (8)
N1A - Al1 - N2A	68.06 (7)	N2D - Al2 - N1C	106.71 (8)
N1B-Al1-N2A	106.08 (8)	N2C-Al2-N1C	67.95 (7)
N2B-Al1-N2A	166.28 (8)	N1D - Al2 - N1C	169.27 (8)
N1A - Al1 - Cl1	118.73 (6)	N2D - Al2 - Cl2	119.70 (6)
N1B-Al1-Cl1	119.03 (6)	N2C - Al2 - Cl2	123.08 (6)
N2B-Al1-Cl1	95.62 (6)	N1D - Al2 - Cl2	95.41 (6)
N2A - Al1 - Cl1	98.02 (6)	N1C - Al2 - Cl2	95.31 (6)

Table 4

Salaatad	goomotria	poromotors	(Å °) for	(\mathbf{III})
Selected	geometric	parameters	IA,	101	(111).

Cl1-Al1	2.1855 (9)	Al1-N1	1.9952 (12)
Al1-N2	1.9260 (12)		
N2-Al1-N2 ⁱ	112.73 (8)	N1-Al1-N1 ⁱ	167.92 (8)
N2-Al1-N1	68.04 (5)	N2-Al1-Cl1	123.64 (4)
N2 ⁱ -Al1-N1	104.92 (5)	N1-Al1-Cl1	96.04 (4)

Symmetry code: (i) $-x + 1, y, -z + \frac{1}{2}$.

The reaction between $AlCl(THF)_n$ and $Li[PhC(NCy)_2]$ resulted in a dark-brown solution which yielded Al[PhC-(NCy)₂]₂Cl, (III), as yellow plate crystals (Fig. 3). Each molecule is bisected by a twofold rotation axis that runs through the Al and Cl atoms, and thus the two PhC(NCy)₂ ligands are identical and have Z' = 0.5. The central Al^{III} cation in (III) has a similar coordination geometry to that of (II), with Al-N bond lengths of 1.9260 (12) and 1.9952 (12) Å, and an Al-Cl bond length of 2.1855 (9) Å (Table 4). The N-C(N) bond lengths are 1.3213 (18) and 1.3407 (18) Å, and the $N-C_{i-Pr}$ bond lengths are 1.4647 (18) and 1.4680 (18) Å. The bond lengths and angles in (III) are quite similar to those in Al-[t-BuC(NCy)₂]₂Cl (Coles et al., 1997). In general, the bond lengths in (III) are within 0.02 Å of those reported in Al- $[t-BuC(NCy)_2]_2Cl$, and the bond angles in (III) are similarly close. The amidinate ligand groups in (II) and (III) are also similar, such that the bond angles and lengths between the ligand and Al^{III} cation generally agree to within 1° and 0.01 Å, respectively. The structure of (III) contains THF solvent, which was found to be both disordered and partially present. As this could not be refined satisfactorily, the SQUEEZE procedure of PLATON (Spek, 2009) was used to remove the effects of approximately 2.7 THF molecules from the unit cell. The disorder of these molecules may be related to the channel

Figure 3

The molecular structure of (III), showing the coordination geometry at the Al^{III} cation and the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity. The colour key is as in Fig. 2. [Symmetry code: (i) -x + 1, y, $-z + \frac{1}{2}$

solvate nature of the packed structure, with the channels running parallel to the crystallographic *c* direction.

The authors thank AFOSR (grant No. FA9550-11-1-0171), the NSF (grant No. 013367-001). DTRA, and ONR In-House Lab Independent Research for financial support. DHM acknowledges the ASEE Science, Mathematics, and Research for Transformation (SMART) Fellowship Program for support. KB thanks the Air Force Office of Scientific Research for support.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: KY3026). Services for accessing these data are described at the back of the journal.

References

- Bonyhady, S. J., Collis, D., Frenking, G., Holzmann, N., Jones, C. & Stasch, A. (2010). Nat. Chem. 2, 865-869.
- Bruker (2004). XSHELL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Coles, M., Swenson, D., Jordan, R. & Young, V. (1997). Organometallics, 16, 5183-5194.
- Dange, D., Li, J., Schenk, C., Schnöckel, H. & Jones, C. (2012). Inorg. Chem. 51, 13050-13059.
- Kenney, A. P., Yap, G. P. A., Richeson, D. S. & Barry, S. T. (2005). Inorg. Chem. 44, 2926-2933.
- Luo, Y., Yao, Y., Shen, Q., Sun, J. & Weng, L. (2002). J. Organomet. Chem. 662, 144 - 149
- Schnoeckel, H. (2010). Chem. Rev. 110, 4125-4163.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2012). SHELXL2012. University of Göttingen, Germany.

supplementary materials

Acta Cryst. (2013). C69, 1120-1123 [doi:10.1107/S0108270113023135]

Aluminium(III) amidinates formed from reactions of `AlCl' with lithium amidinates

Dennis H. Mayo, Yang Peng, Peter Zavalij, Kit H. Bowen and Bryan W. Eichhorn

Computing details

For all compounds, data collection: *APEX2* (Bruker, 2010); cell refinement: *APEX2* (Bruker, 2010); data reduction: *APEX2* and *SAINT* (Bruker, 2010); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2012* (Sheldrick, 2012); molecular graphics: XSHEL (Bruker, 2004); software used to prepare material for publication: *APEX2* (Bruker, 2010) and *SHELXL2012* (Sheldrick, 2012).

(AlPhCNiPr23) Tris(N,N'-diisopropylbenzimidamido)aluminium(III)

Crystal data	
$[Al(C_{13}H_{19}N_{2})_{3}]$ $M_{r} = 636.88$ Orthorhombic, <i>Pccn</i> a = 31.286 (3) Å b = 33.409 (3) Å c = 14.3488 (12) Å V = 14998 (2) Å ³ Z = 16 F(000) = 5536	$D_x = 1.128 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 18169 reflections $\theta = 2.3-22.3^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 150 K Prism, colourless $0.35 \times 0.30 \times 0.11 \text{ mm}$
Data collection	
Bruker SMART APEXII area-detector diffractometer Radiation source: sealed tube Graphite monochromator Detector resolution: 11.198 pixels mm ⁻¹ φ and ω scans Absorption correction: multi-scan (TWINABS; Sheldrick, 2008) $T_{min} = 0.930, T_{max} = 0.990$	242499 measured reflections 14753 independent reflections 10759 reflections with $I > 2\sigma(I)$ $R_{int} = 0.086$ $\theta_{max} = 26.0^{\circ}, \ \theta_{min} = 1.7^{\circ}$ $h = 0 \rightarrow 38$ $k = 0 \rightarrow 41$ $l = 0 \rightarrow 17$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.050$ $wR(F^2) = 0.087$ S = 1.03 14753 reflections 901 parameters 58 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.010P)^2 + 9.5P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.22$ e Å ⁻³ $\Delta\rho_{min} = -0.23$ e Å ⁻³

Special details

Experimental. Crystal was split into 2 domains tilted \sim5° from each other. After integration of the twin, reflections were merged into single domain set and used in all further refinements. Using 2 domains reflection set yields worse agreement between calculated and observed intensities.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. 4 of 12 iso-propyl groups are disordered in 2 alternatiove orientations which geometry was restrained to be similar to each other and anisotropic adp's were retrained to rigid body motions.

H atoms were positioned from geometric consideration and refined as riding on the attached atoms with orientation of CH3 groups optimized. U_{iso} of H atoms were constrained to value 20% larger than Ueqv of attached atoms (50% larger for CH3 groups).

	x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
All	0.37698 (2)	0.36642 (2)	0.11857 (4)	0.02437 (12)	
C1A	0.37432 (6)	0.29394 (5)	0.09789 (12)	0.0284 (4)	
C2A	0.37184 (6)	0.24948 (6)	0.08663 (13)	0.0338 (4)	
C3A	0.40335 (7)	0.22501 (6)	0.12315 (15)	0.0489 (6)	
H3A	0.4276	0.2365	0.1528	0.059*	
C4A	0.39974 (9)	0.18382 (6)	0.11669 (17)	0.0598 (7)	
H4A	0.4215	0.1672	0.1420	0.072*	
C5A	0.36490 (8)	0.16680 (6)	0.07382 (17)	0.0568 (7)	
H5A	0.3623	0.1385	0.0706	0.068*	
C6A	0.33390 (8)	0.19065 (6)	0.03580 (16)	0.0527 (6)	
H6A	0.3101	0.1789	0.0052	0.063*	
C7A	0.33738 (7)	0.23199 (6)	0.04205 (14)	0.0417 (5)	
H7A	0.3158	0.2484	0.0154	0.050*	
N1A	0.35255 (5)	0.31477 (4)	0.16089 (10)	0.0285 (3)	
C8A	0.42881 (9)	0.30258 (13)	-0.0230 (2)	0.0388 (6)	0.866 (6)
H8A	0.4263	0.2727	-0.0245	0.047*	0.866 (6)
C9A	0.41914 (8)	0.31832 (12)	-0.11927 (17)	0.0531 (9)	0.866 (6)
H9A1	0.3900	0.3108	-0.1369	0.080*	0.866 (6)
H9A2	0.4394	0.3069	-0.1640	0.080*	0.866 (6)
H9A3	0.4217	0.3476	-0.1194	0.080*	0.866 (6)
C10A	0.47426 (9)	0.31317 (15)	0.0056 (2)	0.0755 (13)	0.866 (6)
H10A	0.4765	0.3422	0.0149	0.113*	0.866 (6)
H10B	0.4942	0.3048	-0.0434	0.113*	0.866 (6)
H10C	0.4814	0.2993	0.0639	0.113*	0.866 (6)
C14A	0.4342 (5)	0.3029 (8)	-0.0110 (12)	0.0388 (6)	0.134 (6)
H14A	0.4466	0.2786	0.0193	0.047*	0.134 (6)
C15A	0.4170 (6)	0.2915 (7)	-0.1056 (12)	0.0531 (9)	0.134 (6)
H15A	0.4002	0.3137	-0.1310	0.080*	0.134 (6)
H15B	0.3988	0.2678	-0.0997	0.080*	0.134 (6)
H15C	0.4409	0.2855	-0.1477	0.080*	0.134 (6)
C16A	0.4692 (7)	0.3341 (8)	-0.0227 (17)	0.0755 (13)	0.134 (6)
H16A	0.4917	0.3235	-0.0631	0.113*	0.134 (6)
H16B	0.4813	0.3407	0.0384	0.113*	0.134 (6)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H16C	0.4571	0.3583	-0.0509	0.113*	0.134 (6)
N2A	0.39878 (5)	0.31796 (4)	0.04708 (10)	0.0295 (3)	
C11A	0.32115 (9)	0.30161 (8)	0.22974 (18)	0.0364 (7)	0.853 (4)
H11A	0.3209	0.3227	0.2791	0.044*	0.853 (4)
C12A	0.27625 (13)	0.30108 (10)	0.1887 (3)	0.0428 (9)	0.853 (4)
H12A	0.2702	0.3270	0.1594	0.064*	0.853 (4)
H12B	0.2554	0.2962	0.2385	0.064*	0.853 (4)
H12C	0.2742	0.2798	0.1420	0.064*	0.853 (4)
C13A	0.33126 (9)	0.26254 (8)	0.27962 (18)	0.0490 (8)	0.853 (4)
H13A	0.3274	0.2401	0.2364	0.073*	0.853 (4)
H13B	0.3120	0.2593	0.3329	0.073*	0.853 (4)
H13C	0.3609	0.2631	0.3017	0.073*	0.853 (4)
C17A	0.3173 (4)	0.2924 (6)	0.2075 (9)	0.0364 (7)	0.147 (4)
H17A	0.3160	0.2652	0.1785	0.044*	0.147 (4)
C18A	0.2738 (8)	0.3122 (8)	0.193 (2)	0.0428 (9)	0.147 (4)
H18A	0.2751	0.3402	0.2132	0.064*	0.147 (4)
H18B	0.2521	0.2979	0.2290	0.064*	0.147 (4)
H18C	0.2663	0.3112	0.1264	0.064*	0.147 (4)
C19A	0.3252(5)	0.2866 (5)	0.3120 (9)	0.0490 (8)	0.147 (4)
H19A	0.3503	0.2695	0.3211	0.073*	0.147 (4)
H19B	0.3002	0.2740	0.3405	0.073*	0.147 (4)
H19C	0.3303	0.3127	0.3413	0.073*	0.147 (4)
C1B	0.31026 (5)	0.40381 (5)	0.10400 (12)	0.0255 (4)	
C2B	0.26968(5)	0.42727(5)	0.09307(12)	0.0274(4)	
C3B	0.26978 (6)	0.46290(6)	0.04392(14)	0.0385(5)	
H3B	0.2957	0.4725	0.0175	0.046*	
C4B	0.23256 (6)	0.48476 (6)	0.03284(15)	0.0433(5)	
H4R	0.23200 (0)	0.5091	-0.0012	0.052*	
C5B	0 19492 (6)	0.47118 (6)	0.0012 0.07120(14)	0.032	
H5B	0.1694	0.4863	0.0640	0.044*	
C6B	0 19430 (6)	0.43573(5)	0.11999(14)	0.0358 (5)	
H6B	0.1683	0.4263	0.1462	0.043*	
C7B	0.23155 (6)	0.41387(5)	0.13095 (13)	0.0333(4)	
H7B	0.23105 (0)	0 3894	0.1648	0.040*	
N1R	0.2310 0.33336(4)	0.40256 (4)	0.18092 (10)	0.0255 (3)	
C8B	0.33350 (4)	0.40250(4) 0.42696(5)	0.16092(10) 0.26272(13)	0.0235(3) 0.0327(4)	
HSB	0.3013	0.42090 (3)	0.20272 (13)	0.0327 (4)	
COR	0.36203 (7)	0.4470 0.44842(6)	0.2432 0.20873 (14)	0.039	
	0.30203 (7)	0.44842 (0)	0.29875 (14)	0.0400 (5)	
119D1 110D2	0.3830	0.4287	0.3203	0.069*	
119D2 110D3	0.3340	0.4000	0.3300	0.009	
C10D	0.3743 0.20202 (7)	0.4045	0.2483 0.24012 (14)	0.009°	
	0.30292 (7)	0.40195 (0)	0.34012(14) 0.2162	0.0401(3)	
	0.2770	0.3881	0.3103	0.009	
	0.2947	0.4194	0.3919	0.009	
	0.3238	0.3822	0.3020	0.009.	
	0.30400 (0)	0.3/4/8(0)	-0.0318/(13) -0.0475	0.0334 (3)	
	0.2701	0.20242 (7)	-0.04/3	0.042^{+}	
UI2B	0.52805 (8)	0.39243 (7)	-0.13483 (14)	0.0000 (6)	
HT2D	0.3274	0.421/	-0.1309	0.082*	

H12E	0.3140	0.3838	-0.1925	0.082*
H12F	0.3578	0.3832	-0.1347	0.082*
N2B	0.32770 (4)	0.38256 (4)	0.03550 (10)	0.0266 (3)
C13B	0.29714 (6)	0.33021 (6)	-0.06506 (14)	0.0419 (5)
H13D	0.3247	0.3163	-0.0674	0.063*
H13E	0.2816	0.3257	-0.1235	0.063*
H13F	0.2802	0.3199	-0.0128	0.063*
C1C	0.44314 (6)	0.40129 (5)	0.15950 (13)	0.0319 (4)
C2C	0.48328 (6)	0.42313 (6)	0.18523 (14)	0.0384 (5)
C3C	0.52062 (7)	0.41680 (7)	0.13534 (19)	0.0568 (6)
H3C	0.5209	0.3982	0.0852	0.068*
C4	0.55767 (7)	0.43756 (8)	0.1585 (2)	0.0696 (8)
H4	0.5832	0.4329	0.1244	0.083*
C5C	0.55746 (8)	0.46472 (8)	0.2303 (2)	0.0672 (8)
H5C	0.5829	0.4787	0.2462	0.081*
C6C	0.52063 (9)	0.47162 (8)	0.27891 (19)	0.0705 (8)
H6C	0.5203	0.4908	0.3278	0.085*
C7C	0.48369 (8)	0.45065 (7)	0.25692 (17)	0.0578 (6)
H7C	0.4583	0.4553	0.2917	0.069*
N1C	0.42638 (5)	0.37157 (4)	0.20806 (10)	0.0290 (3)
C8C	0.42788 (6)	0.44607 (6)	0.02949 (14)	0.0401 (5)
H8C	0.4501	0.4623	0.0623	0.048*
C9C	0.38766 (6)	0.47131 (6)	0.02092 (15)	0.0417 (5)
H9C1	0.3943	0.4962	-0.0121	0.063*
H9C2	0.3768	0.4776	0.0832	0.063*
H9C3	0.3659	0.4564	-0.0139	0.063*
C10C	0.44466 (8)	0.43558 (7)	-0.06678 (16)	0.0648 (7)
H10G	0.4708	0.4196	-0.0607	0.097*
H10H	0.4510	0.4602	-0.1011	0.097*
H10I	0.4230	0.4202	-0.1006	0.097*
N2C	0.41959 (5)	0.40996 (4)	0.08501 (11)	0.0325 (4)
C11C	0.44864 (6)	0.35231 (6)	0.28607 (13)	0.0353 (5)
H11C	0.4740	0.3692	0.3026	0.042*
C12C	0.42030 (7)	0.34970 (8)	0.37019 (15)	0.0637 (7)
H12G	0.4136	0.3767	0.3923	0.096*
H12H	0.4350	0.3348	0.4195	0.096*
H12I	0.3938	0.3358	0.3536	0.096*
C13C	0.46464 (9)	0.31132 (7)	0.25844 (18)	0.0791 (9)
H13G	0.4406	0.2951	0.2362	0.119*
H13H	0.4778	0.2983	0.3125	0.119*
H13I	0.4859	0.3140	0.2087	0.119*
A12	0.37998 (2)	0.64639 (2)	0.36001 (4)	0.02457 (12)
C1D	0.31649 (5)	0.60332 (5)	0.34917 (12)	0.0274 (4)
C2D	0.27771 (5)	0.57700 (5)	0.34328 (12)	0.0282 (4)
C3D	0.24150 (6)	0.58567 (5)	0.39528 (13)	0.0345 (4)
H3D	0.2412	0.6086	0.4345	0.041*
C4D	0.20570 (6)	0.56131 (6)	0.39077 (14)	0.0384 (5)
H4D	0.1812	0.5676	0.4269	0.046*
C5D	0.20555 (6)	0.52816 (6)	0.33425 (14)	0.0376 (5)

H5D	0.1810	0.5115	0.3312	0.045*
C6D	0.24119 (6)	0.51914 (6)	0.28200 (15)	0.0424 (5)
H6D	0.2411	0.4962	0.2427	0.051*
C7D	0.27713 (6)	0.54332 (6)	0.28648 (14)	0.0386 (5)
H7D	0.3016	0.5368	0.2504	0.046*
N1D	0.32807 (5)	0.62932 (4)	0.28395 (10)	0.0307 (4)
C8D	0.29988 (6)	0.63924 (6)	0.20547 (13)	0.0381 (5)
H8D	0.2717	0.6260	0.2165	0.046*
C9D	0.29233 (6)	0.68411 (6)	0.20005 (14)	0.0447 (5)
H9D1	0.2790	0.6933	0.2580	0.067*
H9D2	0.2734	0.6901	0.1474	0.067*
H9D3	0.3197	0.6979	0.1913	0.067*
C10D	0.31777 (7)	0.62359 (7)	0.11355 (14)	0.0542 (6)
H10J	0.3465	0.6345	0.1037	0.081*
H10K	0.2991	0.6319	0.0623	0.081*
H10L	0.3193	0.5943	0.1156	0.081*
N2D	0.34371 (4)	0.60324 (4)	0.42005 (10)	0.0274 (3)
C11D	0.34084 (6)	0.57323 (5)	0.49438 (13)	0.0328 (4)
H11D	0.3217	0.5512	0.4723	0.039*
C12D	0.38475 (6)	0.55526 (6)	0.51400 (15)	0.0424 (5)
H12J	0.3949	0.5411	0.4585	0.064*
H12K	0.3827	0.5365	0.5662	0.064*
H12L	0.4048	0.5767	0.5299	0.064*
C13D	0.32180 (7)	0.59037 (6)	0.58335 (14)	0.0457 (5)
H13J	0.3404	0.6116	0.6073	0.069*
H13K	0.3193	0.5691	0.6301	0.069*
H13L	0.2934	0.6015	0.5700	0.069*
C1E	0.37174 (5)	0.71908 (5)	0.35371 (12)	0.0256 (4)
C2E	0.36747 (6)	0.76381 (5)	0.34912 (12)	0.0296 (4)
C3E	0.40107 (7)	0.78807 (6)	0.37688 (14)	0.0395 (5)
H3E	0.4266	0.7763	0.4000	0.047*
C4E	0.39782 (8)	0.82927 (6)	0.37125 (16)	0.0523 (6)
H4E	0.4210	0.8456	0.3911	0.063*
C5E	0.36123 (8)	0.84666 (6)	0.33711 (17)	0.0559 (6)
H5E	0.3593	0.8750	0.3321	0.067*
C6E	0.32771 (7)	0.82312 (7)	0.31042 (17)	0.0555 (6)
H6E	0.3022	0.8351	0.2878	0.067*
C7E	0.33065 (6)	0.78179 (6)	0.31620 (15)	0.0430 (5)
H7E	0.3072	0.7657	0.2974	0.052*
N1E	0.39597 (4)	0.69803 (4)	0.29583 (10)	0.0258 (3)
C8E	0.42244 (6)	0.71676 (5)	0.22381 (12)	0.0305 (4)
H8E	0.4153	0.7459	0.2215	0.037*
C9E	0.41301 (7)	0.69879 (6)	0.12889 (13)	0.0441 (5)
H9E1	0.4186	0.6699	0.1305	0.066*
H9E2	0.4314	0.7114	0.0819	0.066*
H9E3	0.3830	0.7035	0.1129	0.066*
C10E	0.46953 (6)	0.71261 (6)	0.24634 (14)	0.0437 (5)
H10M	0.4758	0.7268	0.3045	0.066*
H10N	0.4865	0.7241	0.1956	0.066*

H10O	0.4767	0.6842	0.2535	0.066*	
N2E	0.35260 (4)	0.69555 (4)	0.41534 (10)	0.0277 (3)	
C11E	0.32134 (12)	0.71432 (9)	0.4803 (2)	0.0287 (8)	0.669 (3)
H11E	0.3197	0.7437	0.4674	0.034*	0.669 (3)
C12E	0.2776 (3)	0.6956 (5)	0.4651 (9)	0.0474 (19)	0.669 (3)
H12M	0.2684	0.7003	0.4007	0.071*	0.669 (3)
H12N	0.2569	0.7077	0.5080	0.071*	0.669 (3)
H12O	0.2792	0.6667	0.4766	0.071*	0.669 (3)
C13E	0.33384 (10)	0.70779 (11)	0.5821 (2)	0.0458 (8)	0.669 (3)
H13M	0.3368	0.6791	0.5942	0.069*	0.669 (3)
H13N	0.3117	0.7190	0.6227	0.069*	0.669 (3)
H13O	0.3611	0.7212	0.5946	0.069*	0.669 (3)
C17E	0.3205 (3)	0.6996 (2)	0.4887 (6)	0.0287 (8)	0.331 (3)
H17E	0.3233	0.6759	0.5309	0.034*	0.331 (3)
C18E	0.2755 (5)	0.6997 (10)	0.450 (2)	0.0474 (19)	0.331 (3)
H18M	0.2718	0.7227	0.4087	0.071*	0.331 (3)
H18N	0.2550	0.7015	0.5019	0.071*	0.331 (3)
H18O	0.2705	0.6749	0.4155	0.071*	0.331 (3)
C19E	0.3304 (2)	0.7364 (2)	0.5451 (4)	0.0458 (8)	0.331 (3)
H19M	0.3114	0.7376	0.5993	0.069*	0.331 (3)
H19N	0.3261	0.7603	0.5065	0.069*	0.331 (3)
H19O	0.3602	0.7354	0.5661	0.069*	0.331 (3)
C1F	0.45074 (5)	0.61603 (5)	0.38032 (13)	0.0277 (4)	
C2F	0.49321 (6)	0.59610 (5)	0.39381 (14)	0.0323 (4)	
C3F	0.52564 (6)	0.60114 (5)	0.32799 (15)	0.0381 (5)	
H3F	0.5209	0.6178	0.2754	0.046*	
C4F	0.56468 (6)	0.58206 (6)	0.33873 (17)	0.0465 (6)	
H4F	0.5867	0.5860	0.2940	0.056*	
C5F	0.57158 (6)	0.55745 (6)	0.41426 (17)	0.0492 (6)	
H5F	0.5983	0.5443	0.4215	0.059*	
C6F	0.53976 (7)	0.55191 (6)	0.47929 (17)	0.0483 (6)	
H6F	0.5445	0.5348	0.5311	0.058*	
C7F	0.50078 (6)	0.57133 (6)	0.46940 (15)	0.0406 (5)	
H7F	0.4791	0.5676	0.5149	0.049*	
N1F	0.42561 (4)	0.60969 (4)	0.30707 (10)	0.0288 (3)	
C8F	0.43367 (6)	0.57660 (6)	0.24177 (14)	0.0384 (5)	
H8F	0.4595	0.5618	0.2638	0.046*	
C9F	0.39648 (8)	0.54767 (7)	0.24042 (17)	0.0628 (7)	
H9F1	0.3924	0.5365	0.3029	0.094*	
H9F2	0.4025	0.5260	0.1963	0.094*	
H9F3	0.3705	0.5618	0.2212	0.094*	
C10F	0.44222 (7)	0.59103 (7)	0.14327 (15)	0.0507 (6)	
H10P	0.4165	0.6040	0.1186	0.076*	
H10Q	0.4497	0.5682	0.1038	0.076*	
H10R	0.4659	0.6102	0.1438	0.076*	
N2F	0.43312 (4)	0.64145 (4)	0.44012 (10)	0.0262 (3)	
C11F	0.45671 (18)	0.65933 (17)	0.5185 (3)	0.0301 (5)	0.764 (14)
H11F	0.4865	0.6485	0.5173	0.036*	0.764 (14)
C12F	0.4593 (2)	0.70472 (13)	0.5101 (4)	0.0388 (11)	0.764 (14)

H12P	0.4761	0.7118	0.4550	0.058*	0.764 (14)
H12Q	0.4729	0.7158	0.5659	0.058*	0.764 (14)
H12R	0.4304	0.7158	0.5040	0.058*	0.764 (14)
C13F	0.43651 (18)	0.64762 (17)	0.6113 (3)	0.0400 (10)	0.764 (14)
H13P	0.4059	0.6539	0.6100	0.060*	0.764 (14)
H13Q	0.4503	0.6625	0.6618	0.060*	0.764 (14)
H13R	0.4403	0.6188	0.6216	0.060*	0.764 (14)
C17F	0.4560 (6)	0.6575 (5)	0.5216 (8)	0.0301 (5)	0.236 (14)
H17F	0.4805	0.6396	0.5377	0.036*	0.236 (14)
C18F	0.4727 (6)	0.6986 (5)	0.4939 (12)	0.0388 (11)	0.236 (14)
H18D	0.4957	0.6955	0.4482	0.058*	0.236 (14)
H18E	0.4837	0.7124	0.5492	0.058*	0.236 (14)
H18F	0.4494	0.7143	0.4665	0.058*	0.236 (14)
C19F	0.4254 (5)	0.6602 (5)	0.6042 (11)	0.0400 (10)	0.236 (14)
H19D	0.3999	0.6753	0.5859	0.060*	0.236 (14)
H19E	0.4396	0.6738	0.6561	0.060*	0.236 (14)
H19F	0.4171	0.6332	0.6235	0.060*	0.236 (14)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Al1	0.0253 (3)	0.0241 (3)	0.0238 (3)	0.0048 (2)	-0.0012 (2)	0.0003 (2)
C1A	0.0315 (10)	0.0271 (9)	0.0265 (9)	0.0074 (8)	-0.0059 (8)	-0.0010 (8)
C2A	0.0423 (11)	0.0277 (10)	0.0313 (10)	0.0055 (9)	0.0032 (9)	-0.0021 (8)
C3A	0.0627 (15)	0.0315 (11)	0.0526 (14)	0.0119 (10)	-0.0115 (12)	-0.0035 (10)
C4A	0.0845 (19)	0.0311 (12)	0.0637 (16)	0.0194 (12)	-0.0080 (14)	0.0018 (11)
C5A	0.0870 (19)	0.0254 (11)	0.0579 (15)	-0.0006 (12)	0.0159 (14)	-0.0039 (11)
C6A	0.0624 (15)	0.0372 (12)	0.0585 (15)	-0.0069 (11)	0.0056 (12)	-0.0111 (11)
C7A	0.0481 (13)	0.0350 (11)	0.0421 (12)	0.0043 (10)	0.0024 (10)	-0.0048 (10)
N1A	0.0324 (8)	0.0259 (8)	0.0272 (8)	0.0050 (7)	0.0015 (7)	0.0006 (7)
C8A	0.0411 (13)	0.0387 (11)	0.0365 (14)	0.0117 (11)	0.0082 (11)	-0.0038 (11)
C9A	0.0438 (15)	0.082 (3)	0.0333 (13)	0.0136 (16)	0.0090 (11)	-0.0041 (16)
C10A	0.0319 (15)	0.147 (4)	0.047 (2)	0.0269 (19)	0.0039 (13)	-0.013 (2)
C14A	0.0411 (13)	0.0387 (11)	0.0365 (14)	0.0117 (11)	0.0082 (11)	-0.0038 (11)
C15A	0.0438 (15)	0.082 (3)	0.0333 (13)	0.0136 (16)	0.0090 (11)	-0.0041 (16)
C16A	0.0319 (15)	0.147 (4)	0.047 (2)	0.0269 (19)	0.0039 (13)	-0.013 (2)
N2A	0.0316 (8)	0.0285 (8)	0.0284 (8)	0.0065 (7)	0.0028 (7)	-0.0017 (7)
C11A	0.0471 (13)	0.0342 (17)	0.0279 (15)	0.0006 (11)	0.0094 (12)	-0.0019 (11)
C12A	0.0421 (14)	0.035 (2)	0.0508 (15)	-0.0102 (16)	0.0107 (11)	-0.0005 (17)
C13A	0.0726 (18)	0.0359 (16)	0.0384 (15)	-0.0073 (14)	0.0044 (13)	0.0073 (12)
C17A	0.0471 (13)	0.0342 (17)	0.0279 (15)	0.0006 (11)	0.0094 (12)	-0.0019 (11)
C18A	0.0421 (14)	0.035 (2)	0.0508 (15)	-0.0102 (16)	0.0107 (11)	-0.0005 (17)
C19A	0.0726 (18)	0.0359 (16)	0.0384 (15)	-0.0073 (14)	0.0044 (13)	0.0073 (12)
C1B	0.0258 (9)	0.0204 (9)	0.0302 (10)	0.0010 (7)	0.0025 (8)	0.0046 (8)
C2B	0.0271 (9)	0.0247 (9)	0.0304 (10)	0.0044 (8)	0.0000 (8)	-0.0005 (8)
C3B	0.0285 (10)	0.0349 (11)	0.0521 (13)	0.0068 (9)	0.0091 (9)	0.0129 (10)
C4B	0.0349 (11)	0.0346 (11)	0.0606 (14)	0.0109 (9)	0.0064 (10)	0.0192 (10)
C5B	0.0259 (10)	0.0340 (11)	0.0498 (13)	0.0094 (8)	-0.0016 (9)	0.0015 (9)
C6B	0.0244 (10)	0.0337 (11)	0.0495 (12)	0.0009 (8)	0.0030 (9)	0.0029 (9)

C7B	0.0311 (10)	0.0264 (10)	0.0424 (12)	0.0035 (8)	0.0006 (9)	0.0063 (9)
N1B	0.0296 (8)	0.0233 (8)	0.0237 (8)	0.0048 (6)	-0.0002 (6)	-0.0007 (6)
C8B	0.0382 (11)	0.0282 (10)	0.0316 (10)	0.0075 (8)	0.0016 (9)	-0.0063 (8)
C9B	0.0607 (14)	0.0376 (12)	0.0397 (12)	-0.0143 (10)	0.0088 (11)	-0.0122 (10)
C10B	0.0486 (13)	0.0547 (13)	0.0349 (12)	-0.0136 (11)	0.0137 (10)	-0.0155 (10)
C11B	0.0363 (11)	0.0408 (11)	0.0291 (10)	0.0110 (9)	-0.0076 (9)	-0.0013 (9)
C12B	0.0770 (17)	0.0590 (15)	0.0290 (12)	-0.0033 (13)	-0.0071 (11)	0.0049 (10)
N2B	0.0283 (8)	0.0288 (8)	0.0228 (8)	0.0067 (6)	-0.0025 (6)	0.0008 (6)
C13B	0.0442 (12)	0.0474 (13)	0.0342 (11)	0.0005 (10)	-0.0101 (9)	-0.0065 (10)
C1C	0.0288 (10)	0.0308 (10)	0.0362 (11)	0.0023 (8)	-0.0014 (9)	-0.0010 (9)
C2C	0.0326 (11)	0.0379 (11)	0.0448 (12)	-0.0037 (9)	-0.0094 (9)	0.0097 (10)
C3C	0.0345 (12)	0.0500 (14)	0.0860 (19)	-0.0015 (10)	-0.0036 (12)	-0.0006 (13)
C4	0.0317 (13)	0.0650 (17)	0.112 (2)	-0.0060 (12)	-0.0047 (14)	0.0138 (17)
C5C	0.0510 (16)	0.0610 (17)	0.090 (2)	-0.0246 (13)	-0.0288 (15)	0.0212 (15)
C6C	0.0722 (19)	0.0729 (18)	0.0663 (18)	-0.0340 (15)	-0.0143 (15)	-0.0027 (14)
C7C	0.0523 (15)	0.0671 (16)	0.0542 (15)	-0.0218 (12)	-0.0043 (12)	-0.0078 (13)
N1C	0.0290 (8)	0.0291 (8)	0.0288 (8)	0.0020 (7)	-0.0051 (7)	0.0018 (7)
C8C	0.0323 (11)	0.0416 (12)	0.0464 (13)	-0.0050 (9)	-0.0032 (9)	0.0160 (10)
C9C	0.0459 (12)	0.0335 (11)	0.0458 (13)	0.0002 (9)	0.0017 (10)	0.0111 (9)
C10C	0.0559 (15)	0.0760 (18)	0.0624 (16)	0.0209 (13)	0.0293 (13)	0.0333 (14)
N2C	0.0290 (8)	0.0351 (9)	0.0334 (9)	0.0008 (7)	-0.0029 (7)	0.0081 (7)
C11C	0.0373 (11)	0.0341 (11)	0.0345 (11)	-0.0012 (9)	-0.0135 (9)	0.0047 (9)
C12C	0.0582 (15)	0.0860 (18)	0.0470 (14)	0.0063 (14)	-0.0031 (12)	0.0311 (13)
C13C	0.114 (2)	0.0538 (15)	0.0697 (18)	0.0389 (16)	-0.0516 (17)	-0.0077 (14)
A12	0.0230 (3)	0.0267 (3)	0.0240 (3)	-0.0040 (2)	-0.0014 (2)	0.0007 (2)
C1D	0.0246 (9)	0.0285 (9)	0.0292 (10)	-0.0024 (8)	0.0016 (8)	-0.0062 (8)
C2D	0.0240 (9)	0.0300 (10)	0.0304 (10)	-0.0038 (8)	-0.0023 (8)	-0.0024 (8)
C3D	0.0317 (11)	0.0319 (10)	0.0400 (12)	-0.0043 (8)	0.0020 (9)	-0.0059 (9)
C4D	0.0255 (10)	0.0406 (12)	0.0490 (13)	-0.0027 (9)	0.0029 (9)	-0.0003 (10)
C5D	0.0270 (10)	0.0346 (11)	0.0511 (13)	-0.0084 (8)	-0.0100 (9)	0.0029 (10)
C6D	0.0348 (12)	0.0359 (11)	0.0564 (14)	-0.0053 (9)	-0.0065 (10)	-0.0145 (10)
C7D	0.0271 (10)	0.0416 (12)	0.0472 (12)	-0.0030 (9)	-0.0001 (9)	-0.0130 (10)
N1D	0.0284 (8)	0.0395 (9)	0.0241 (8)	-0.0069 (7)	-0.0031 (7)	0.0010 (7)
C8D	0.0305 (10)	0.0565 (13)	0.0274 (10)	-0.0112 (10)	-0.0063 (8)	0.0028 (9)
C9D	0.0370 (12)	0.0638 (15)	0.0334 (11)	-0.0003 (10)	-0.0092 (9)	0.0116 (10)
C10D	0.0597 (15)	0.0732 (16)	0.0298 (11)	-0.0090 (12)	-0.0100 (11)	-0.0066 (11)
N2D	0.0264 (8)	0.0264 (8)	0.0293 (8)	-0.0056 (6)	-0.0032 (7)	0.0020 (7)
C11D	0.0311 (10)	0.0275 (10)	0.0398 (11)	-0.0093 (8)	-0.0041 (9)	0.0074 (9)
C12D	0.0402 (12)	0.0318 (10)	0.0552 (13)	-0.0055 (9)	-0.0093 (10)	0.0106 (10)
C13D	0.0490 (13)	0.0501 (13)	0.0380 (12)	-0.0064 (10)	0.0033 (10)	0.0151 (10)
C1E	0.0229 (9)	0.0311 (10)	0.0227 (9)	0.0007 (7)	-0.0040 (8)	0.0011 (8)
C2E	0.0330 (10)	0.0302 (10)	0.0255 (10)	0.0068 (8)	0.0067 (8)	0.0031 (8)
C3E	0.0449 (12)	0.0318 (11)	0.0419 (12)	0.0039 (9)	-0.0067 (10)	-0.0029 (9)
C4E	0.0622 (15)	0.0304 (11)	0.0643 (15)	0.0008 (11)	-0.0064 (13)	-0.0042 (11)
C5E	0.0653 (16)	0.0306 (12)	0.0718 (17)	0.0098 (11)	0.0083 (13)	0.0072 (11)
C6E	0.0461 (14)	0.0461 (14)	0.0742 (17)	0.0143 (11)	0.0049 (12)	0.0209 (12)
C7E	0.0339 (11)	0.0411 (12)	0.0541 (13)	0.0018 (9)	0.0023 (10)	0.0132 (10)
N1E	0.0252 (8)	0.0277 (8)	0.0246 (8)	-0.0006 (6)	0.0039 (6)	0.0015 (6)
C8E	0.0341 (10)	0.0262 (9)	0.0312 (10)	-0.0020 (8)	0.0081 (8)	0.0019 (8)

C9E	0.0456 (12)	0.0573 (13)	0.0293 (11)	-0.0098 (10)	0.0085 (9)	0.0023 (10)
C10E	0.0364 (12)	0.0534 (13)	0.0413 (12)	-0.0103 (10)	0.0090 (10)	0.0023 (10)
N2E	0.0249 (8)	0.0357 (9)	0.0225 (8)	-0.0022 (7)	0.0019 (6)	0.0018 (7)
C11E	0.0370 (12)	0.020 (2)	0.0289 (13)	-0.0057 (18)	0.0117 (10)	0.0067 (17)
C12E	0.0303 (14)	0.073 (3)	0.039 (5)	0.0018 (16)	0.0073 (14)	-0.004 (3)
C13E	0.0498 (17)	0.058 (2)	0.0295 (16)	-0.0005 (17)	0.0079 (14)	-0.0090 (14)
C17E	0.0370 (12)	0.020 (2)	0.0289 (13)	-0.0057 (18)	0.0117 (10)	0.0067 (17)
C18E	0.0303 (14)	0.073 (3)	0.039 (5)	0.0018 (16)	0.0073 (14)	-0.004 (3)
C19E	0.0498 (17)	0.058 (2)	0.0295 (16)	-0.0005 (17)	0.0079 (14)	-0.0090 (14)
C1F	0.0241 (9)	0.0207 (9)	0.0383 (11)	-0.0049 (7)	0.0006 (8)	0.0029 (8)
C2F	0.0283 (10)	0.0213 (9)	0.0472 (12)	-0.0022 (8)	-0.0019 (9)	-0.0039 (9)
C3F	0.0307 (11)	0.0287 (10)	0.0549 (13)	-0.0046 (8)	0.0008 (10)	-0.0013 (9)
C4F	0.0283 (11)	0.0370 (11)	0.0742 (16)	-0.0025 (9)	0.0069 (11)	-0.0048 (11)
C5F	0.0280 (11)	0.0376 (12)	0.0819 (18)	0.0047 (9)	-0.0029 (11)	-0.0031 (12)
C6F	0.0388 (12)	0.0401 (12)	0.0659 (16)	0.0062 (10)	-0.0067 (11)	0.0064 (11)
C7F	0.0308 (11)	0.0366 (11)	0.0544 (14)	0.0006 (9)	0.0001 (10)	0.0011 (10)
N1F	0.0277 (8)	0.0247 (8)	0.0339 (9)	-0.0039 (6)	-0.0006 (7)	-0.0057 (7)
C8F	0.0385 (11)	0.0297 (10)	0.0471 (12)	-0.0021 (9)	0.0013 (10)	-0.0121 (9)
C9F	0.0778 (18)	0.0485 (14)	0.0622 (16)	-0.0260 (13)	0.0190 (14)	-0.0264 (12)
C10F	0.0494 (13)	0.0539 (14)	0.0490 (14)	-0.0049 (11)	0.0136 (11)	-0.0199 (11)
N2F	0.0242 (8)	0.0246 (8)	0.0297 (8)	-0.0021 (6)	-0.0032 (6)	-0.0012 (6)
C11F	0.0284 (10)	0.0277 (11)	0.0342 (11)	0.0001 (8)	-0.0085 (8)	-0.0006 (9)
C12F	0.047 (3)	0.0295 (17)	0.040 (2)	-0.0042 (17)	-0.014 (2)	-0.0041 (15)
C13F	0.044 (2)	0.041 (2)	0.0354 (14)	-0.0033 (18)	-0.0091 (15)	-0.0017 (17)
C17F	0.0284 (10)	0.0277 (11)	0.0342 (11)	0.0001 (8)	-0.0085 (8)	-0.0006 (9)
C18F	0.047 (3)	0.0295 (17)	0.040 (2)	-0.0042 (17)	-0.014 (2)	-0.0041 (15)
C19F	0.044 (2)	0.041 (2)	0.0354 (14)	-0.0033 (18)	-0.0091 (15)	-0.0017 (17)

Geometric parameters (Å, °)

All—N1A	1.9826 (15)	Al2—N2E	2.0156 (15)	
Al1—N1C	2.0168 (15)	Al2—N1E	2.0185 (15)	
Al1—N2B	2.0220 (14)	Al2—N2D	2.0267 (15)	
Al1—N1B	2.0299 (14)	A12—N2F	2.0279 (14)	
Al1—N2C	2.0310 (16)	Al2—N1F	2.0295 (15)	
Al1—N2A	2.0344 (15)	Al2—N1D	2.0382 (15)	
C1A—N2A	1.327 (2)	C1D—N2D	1.326 (2)	
C1A—N1A	1.329 (2)	C1D—N1D	1.327 (2)	
C1A—C2A	1.496 (2)	C1D—C2D	1.501 (2)	
C2A—C7A	1.383 (3)	C2D—C3D	1.387 (2)	
C2A—C3A	1.384 (3)	C2D—C7D	1.389 (2)	
C3A—C4A	1.384 (3)	C3D—C4D	1.386 (2)	
СЗА—НЗА	0.9500	C3D—H3D	0.9500	
C4A—C5A	1.375 (3)	C4D—C5D	1.373 (3)	
C4A—H4A	0.9500	C4D—H4D	0.9500	
C5A—C6A	1.369 (3)	C5D—C6D	1.377 (3)	
C5A—H5A	0.9500	C5D—H5D	0.9500	
C6A—C7A	1.388 (3)	C6D—C7D	1.386 (3)	
С6А—Н6А	0.9500	C6D—H6D	0.9500	
C7A—H7A	0.9500	C7D—H7D	0.9500	

N1A—C11A	1.461 (3)	N1D—C8D	1.468 (2)
N1A—C17A	1.490 (7)	C8D—C9D	1.519 (3)
C8A—N2A	1.469 (3)	C8D—C10D	1.525 (3)
C8A—C9A	1.508 (4)	C8D—H8D	1.0000
C8A-C10A	1.522 (4)	C9D—H9D1	0.9800
C8A—H8A	1.0000	C9D—H9D2	0.9800
C9A—H9A1	0.9800	C9D—H9D3	0.9800
С9А—Н9А2	0.9800	C10D—H10J	0.9800
С9А—Н9АЗ	0.9800	C10D—H10K	0.9800
C10A—H10A	0.9800	C10D—H10L	0.9800
C10A—H10B	0.9800	N2D—C11D	1.467 (2)
C10A—H10C	0.9800	C11D—C13D	1.521 (3)
C14A—N2A	1.475 (8)	C11D—C12D	1.525 (3)
C14A—C15A	1.509 (10)	C11D—H11D	1.0000
C14A—C16A	1.522 (10)	C12D—H12J	0.9800
C14A - H14A	1 0000	C12D—H12K	0.9800
C15A - H15A	0.9800	C12D $H12L$	0.9800
C15A—H15B	0.9800	C13D—H13I	0.9800
C15A—H15C	0.9800	C13D—H13K	0.9800
C_{16A} H16A	0.9800	C13D—H13I	0.9800
C16A—H16B	0.9800	C1F—N2F	1.326(2)
C16A - H16C	0.9800	CIE NIE	1.326(2) 1.326(2)
C_{11A} C_{13A}	1 522 (3)	C1E - C2E	1.520(2) 1 502(2)
$C_{11}A - C_{12}A$	1.522(3) 1 523(3)	C2EC7E	1.302(2) 1.382(3)
C11A—H11A	1.0000	C2E - C7E	1.302(3) 1 386(3)
$C_{12}A = H_{12}A$	0.9800	C3E - C4E	1.383(3)
C12A—H12B	0.9800	C3E_H3E	0.9500
C12A - H12C	0.9800	C4EC5E	1.374(3)
C13A—H13A	0.9800	C4E—H4E	0.9500
C13A—H13B	0.9800	C5E—C6E	1 366 (3)
C13A—H13C	0.9800	C5E_H5E	0.9500
C17A - C18A	1 527 (10)	C6E - C7E	1.387(3)
C17A - C19A	1 532 (9)	C6E—H6E	0.9500
C17A = H17A	1.0000	C7E H7E	0.9500
	0.0800	NIE C8E	1.465(2)
$C18\Delta$ —H18B	0.9800	C8E - C10E	1.403(2) 1.515(3)
	0.9800	C8E - C9E	1.515(3) 1.517(3)
C10A H10A	0.9800	CSE HSE	1.0000
	0.9800	COE HOE1	0.0800
C19A - H19D	0.9800	COE HOE2	0.9800
CIB NIB	1,320(2)	COE HOE3	0.9800
CIB N2B	1.320(2) 1 320(2)	CIDE HIOM	0.9800
C1B-C2B	1.529(2) 1 500(2)	C10E—H10N	0.9800
C^{2B} C^{2B}	1.300(2) 1 384(2)	C10E - H10O	0.9800
C2B - C7B	1.385(2)	N2E_C17E	1 461 (6)
$C_{2B} = C_{4B}$	1 384 (2)	N2E - C17E N2E - C11E	1 400 (3)
C3B—H3B	0.9500	C11F— $C12F$	1 521 (7)
C4B - C5B	1 377 (3)	C11F - C13F	1.521(7) 1.527(4)
C4B—H4B	0.9500	Clif—Hilf	1 0000
	0.2200		1.0000

C5B—C6B	1.376 (3)	C12E—H12M	0.9800
C5B—H5B	0.9500	C12E—H12N	0.9800
C6B—C7B	1.384 (2)	C12E—H12O	0.9800
С6В—Н6В	0.9500	C13E—H13M	0.9800
С7В—Н7В	0.9500	C13E—H13N	0.9800
N1B—C8B	1.468 (2)	C13E—H13O	0.9800
C8B—C9B	1.516 (3)	C17E—C19E	1.505 (7)
C8B—C10B	1.520 (3)	C17E—C18E	1.512 (9)
C8B—H8B	1.0000	C17E—H17E	1.0000
C9B—H9B1	0.9800	C18E—H18M	0.9800
C9B—H9B2	0.9800	C18E—H18N	0.9800
C9B—H9B3	0.9800	C18E—H18O	0.9800
C10B—H10D	0.9800	C19E—H19M	0.9800
C10B—H10E	0.9800	C19E—H19N	0.9800
C10B—H10F	0.9800	C19E—H19O	0.9800
C11B—N2B	1.469 (2)	C1F—N2F	1.327 (2)
C11B—C12B	1.516 (3)	C1F—N1F	1.329 (2)
C11B—C13B	1.519 (3)	C1F—C2F	1.499 (2)
C11B—H11B	1.0000	C2F—C7F	1.385 (3)
C12B—H12D	0.9800	C2F—C3F	1.396 (3)
C12B—H12E	0.9800	C3F—C4F	1.386 (3)
C12B—H12F	0.9800	C3F—H3F	0.9500
C13B—H13D	0.9800	C4F—C5F	1.377 (3)
C13B—H13E	0.9800	C4F—H4F	0.9500
C13B—H13F	0.9800	C5F—C6F	1.377 (3)
C1C—N1C	1.322 (2)	C5F—H5F	0.9500
C1C—N2C	1.330 (2)	C6F—C7F	1.389 (3)
C1C—C2C	1.499 (3)	C6F—H6F	0.9500
C2C—C7C	1.380 (3)	C7F—H7F	0.9500
C2C—C3C	1.386 (3)	N1F—C8F	1.471 (2)
C3C—C4	1.391 (3)	C8F—C9F	1.513 (3)
СЗС—НЗС	0.9500	C8F—C10F	1.517 (3)
C4—C5C	1.373 (4)	C8F—H8F	1.0000
C4—H4	0.9500	C9F—H9F1	0.9800
C5C—C6C	1.367 (4)	C9F—H9F2	0.9800
C5C—H5C	0.9500	C9F—H9F3	0.9800
C6C—C7C	1.388 (3)	C10F—H10P	0.9800
С6С—Н6С	0.9500	C10F—H10Q	0.9800
C7C—H7C	0.9500	C10F—H10R	0.9800
N1C—C11C	1.467 (2)	N2F—C11F	1.472 (3)
C8C—N2C	1.469 (2)	N2F—C17F	1.473 (7)
C8C—C10C	1.519 (3)	C11F—C12F	1.523 (4)
C8C—C9C	1.520 (3)	C11F—C13F	1.525 (4)
C8C—H8C	1.0000	C11F—H11F	1.0000
С9С—Н9С1	0.9800	C12F—H12P	0.9800
С9С—Н9С2	0.9800	C12F—H12Q	0.9800
С9С—Н9С3	0.9800	C12F—H12R	0.9800
C10C—H10G	0.9800	C13F—H13P	0.9800
С10С—Н10Н	0.9800	C13F—H13Q	0.9800

C10C—H10I	0.9800	C13F—H13R	0.9800
C11C—C12C	1.500(3)	C17F—C18F	1.520 (8)
C11C—C13C	1.511 (3)	C17F—C19F	1.526 (9)
C11C—H11C	1.0000	C17F—H17F	1.0000
C12C—H12G	0.9800	C18F—H18D	0.9800
C12C—H12H	0.9800	C18F—H18E	0.9800
C12C—H12I	0.9800	C18F—H18F	0.9800
C13C—H13G	0.9800	C19F—H19D	0.9800
С13С—Н13Н	0.9800	C19F—H19E	0.9800
C13C—H13I	0.9800	C19F—H19F	0.9800
N1A—Al1—N1C	100.06 (6)	N2E—Al2—N1E	65.70 (6)
N1A—Al1—N2B	96.82 (6)	N2E—Al2—N2D	100.03 (6)
N1C—Al1—N2B	159.54 (6)	N1E—Al2—N2D	160.14 (6)
N1A—Al1—N1B	97.10 (6)	N2E—Al2—N2F	101.04 (6)
N1C—Al1—N1B	100.60 (6)	N1E—Al2—N2F	97.19 (6)
N2B—Al1—N1B	65.71 (6)	N2D—A12—N2F	99.21 (6)
N1A—Al1—N2C	161.62 (6)	N2E—Al2—N1F	159.86 (6)
N1C—Al1—N2C	65.60 (6)	N1E—Al2—N1F	99.87 (6)
N2B—Al1—N2C	99.77 (6)	N2D—A12—N1F	97.08 (6)
N1B—Al1—N2C	96.88 (6)	N2F—Al2—N1F	65.56 (6)
N1A—Al1—N2A	65.85 (6)	N2E—A12—N1D	95.75 (6)
N1C—Al1—N2A	97.58 (6)	N1E—Al2—N1D	101.08 (6)
N2B—A11—N2A	99.83 (6)	N2D—A12—N1D	65.32 (6)
N1B—Al1—N2A	157.07 (6)	N2F—Al2—N1D	159.07 (6)
N2C—All—N2A	103.32 (6)	N1F—Al2—N1D	101.02 (6)
N2A—C1A—N1A	110.66 (15)	N2D—C1D—N1D	111.51 (15)
N2A—C1A—C2A	124.81 (16)	N2D—C1D—C2D	124.13 (16)
N1A—C1A—C2A	124.53 (16)	N1D—C1D—C2D	124.36 (16)
C7A—C2A—C3A	118.75 (18)	C3D—C2D—C7D	118.31 (16)
C7A—C2A—C1A	120.65 (17)	C3D—C2D—C1D	120.49 (16)
C3A—C2A—C1A	120.57 (18)	C7D—C2D—C1D	121.20 (16)
C2A—C3A—C4A	120.3 (2)	C4D—C3D—C2D	120.81 (17)
С2А—С3А—Н3А	119.9	C4D—C3D—H3D	119.6
С4А—С3А—Н3А	119.9	C2D—C3D—H3D	119.6
C5A—C4A—C3A	120.4 (2)	C5D—C4D—C3D	120.28 (18)
С5А—С4А—Н4А	119.8	C5D—C4D—H4D	119.9
C3A—C4A—H4A	119.8	C3D—C4D—H4D	119.9
C6A—C5A—C4A	120.0 (2)	C4D—C5D—C6D	119.69 (17)
C6A—C5A—H5A	120.0	C4D—C5D—H5D	120.2
С4А—С5А—Н5А	120.0	C6D—C5D—H5D	120.2
C5A—C6A—C7A	119.9 (2)	C5D—C6D—C7D	120.27 (18)
С5А—С6А—Н6А	120.1	C5D—C6D—H6D	119.9
С7А—С6А—Н6А	120.1	C7D—C6D—H6D	119.9
C2A—C7A—C6A	120.7 (2)	C6D—C7D—C2D	120.65 (18)
С2А—С7А—Н7А	119.6	C6D—C7D—H7D	119.7
С6А—С7А—Н7А	119.6	C2D—C7D—H7D	119.7
C1A—N1A—C11A	130.33 (17)	C1D—N1D—C8D	121.64 (15)
C1A—N1A—C17A	115.0 (8)	C1D—N1D—A12	91.32 (11)

C1A—N1A—All	92.86 (11)	C8D—N1D—Al2	145.71 (12)
C11A—N1A—A11	136.74 (14)	N1D—C8D—C9D	110.81 (15)
C17A—N1A—A11	149.2 (8)	N1D-C8D-C10D	111.43 (16)
N2A—C8A—C9A	112.1 (2)	C9D—C8D—C10D	110.55 (17)
N2A—C8A—C10A	109.3 (2)	N1D—C8D—H8D	108.0
C9A - C8A - C10A	110.7(3)	C9D - C8D - H8D	108.0
N2A—C8A—H8A	108.2	C10D - C8D - H8D	108.0
C9A - C8A - H8A	108.2	C8D - C9D - H9D1	109.5
C10A - C8A - H8A	108.2	C8D - C9D - H9D2	109.5
C8A - C9A - H9A1	109.5	H9D1 - C9D - H9D2	109.5
C8A - C9A - H9A2	109.5	C8D - C9D - H9D3	109.5
H9A1 - C9A - H9A2	109.5	H9D1 - C9D - H9D3	109.5
C8A - C9A - H9A3	109.5	H9D2 - C9D - H9D3	109.5
H9A1 - C9A - H9A3	109.5	C8D - C10D - H10I	109.5
H9A2 - C9A - H9A3	109.5	C8D-C10D-H10K	109.5
$C_{8A} = C_{10A} = H_{10A}$	109.5	HIOL CIOD HIOK	109.5
$C_{8A} = C_{10A} = H_{10B}$	109.5	$\frac{1103-010D-110K}{00}$	109.5
$H_{10A} = C_{10A} = H_{10B}$	109.5		109.5
C_{2}^{2}	109.5	HIOF CIOD HIOF	109.5
	109.5	$\begin{array}{c} \text{HI0K} \\ \text{CID} \\ \text{N2D} \\ \text{CID} \\ \end{array}$	109.3
H10A - C10A - H10C	109.5	C1D = N2D = A12	121.30(14)
$\mathbf{N}_{\mathbf{A}} = \mathbf{C}_{\mathbf{A}} \mathbf{A} = \mathbf{C}_{\mathbf{A}} \mathbf{A}$	109.3 100.1(12)	C1D - N2D - A12	91.04 (11)
N2A = C14A = C16A	109.1(13)	N2D C11D C12D	140.00(11)
$N_{2}A - C_{14}A - C_{16}A$	111.0(10) 100.2(12)	N2D—CIID—CI3D	112.15 (15)
C15A - C14A - C16A	109.3 (13)	N_2D — $C_{11}D$ — $C_{12}D$	110.37 (15)
N_{2A} C_{14A} H_{14A}	108.9		110.24 (16)
C15A—C14A—H14A	108.9	N2D—CIID—HIID	108.0
C16A—C14A—H14A	108.9	CI3D—CIID—HIID	108.0
CI4A—CI5A—HI5A	109.5	CI2D—CIID—HIID	108.0
CI4A—CI5A—HI5B	109.5	CIID—CI2D—HI2J	109.5
HI5A—CI5A—HI5B	109.5	CIID—CI2D—HI2K	109.5
C14A—C15A—H15C	109.5	H12J—C12D—H12K	109.5
HI5A—CI5A—HI5C	109.5	CIID—CI2D—HI2L	109.5
H15B—C15A—H15C	109.5	H12J—C12D—H12L	109.5
C14A—C16A—H16A	109.5	H12K—C12D—H12L	109.5
C14A—C16A—H16B	109.5	C11D—C13D—H13J	109.5
H16A—C16A—H16B	109.5	С11D—С13D—Н13К	109.5
C14A—C16A—H16C	109.5	H13J—C13D—H13K	109.5
H16A—C16A—H16C	109.5	C11D—C13D—H13L	109.5
H16B—C16A—H16C	109.5	H13J—C13D—H13L	109.5
C1A—N2A—C8A	122.2 (2)	H13K—C13D—H13L	109.5
C1A—N2A—C14A	122.5 (11)	N2E—C1E—N1E	111.20 (15)
C1A—N2A—All	90.62 (10)	N2E—C1E—C2E	125.37 (15)
C8A—N2A—All	146.9 (2)	N1E—C1E—C2E	123.43 (15)
C14A—N2A—All	144.0 (10)	C7E—C2E—C3E	118.45 (17)
N1A—C11A—C13A	115.9 (2)	C7E—C2E—C1E	121.43 (17)
N1A—C11A—C12A	111.3 (3)	C3E—C2E—C1E	120.11 (16)
C13A—C11A—C12A	111.3 (2)	C4E—C3E—C2E	120.63 (19)
N1A—C11A—H11A	105.9	C4E—C3E—H3E	119.7
C13A—C11A—H11A	105.9	C2E—C3E—H3E	119.7

C12A—C11A—H11A	105.9	C5E—C4E—C3E	120.2 (2)
C11A—C12A—H12A	109.5	C5E—C4E—H4E	119.9
C11A—C12A—H12B	109.5	C3E—C4E—H4E	119.9
H12A—C12A—H12B	109.5	C6E—C5E—C4E	119.8 (2)
C11A—C12A—H12C	109.5	C6E—C5E—H5E	120.1
H12A—C12A—H12C	109.5	C4E—C5E—H5E	120.1
H12B—C12A—H12C	109.5	С5Е—С6Е—С7Е	120.4 (2)
C11A—C13A—H13A	109.5	С5Е—С6Е—Н6Е	119.8
C11A—C13A—H13B	109.5	С7Е—С6Е—Н6Е	119.8
H13A—C13A—H13B	109.5	C2E—C7E—C6E	120.6 (2)
C11A—C13A—H13C	109.5	C2E—C7E—H7E	119.7
H13A—C13A—H13C	109.5	С6Е—С7Е—Н7Е	119.7
H13B—C13A—H13C	109.5	C1E—N1E—C8E	122.58 (14)
N1A—C17A—C18A	112.4 (18)	C1E—N1E—Al2	91.48 (10)
N1A—C17A—C19A	112.5 (10)	C8E—N1E—Al2	145.80 (12)
C18A—C17A—C19A	109.6 (12)	N1E-C8E-C10E	111.12 (15)
N1A—C17A—H17A	107.4	N1E—C8E—C9E	110.76 (14)
C18A—C17A—H17A	107.4	C10E—C8E—C9E	110.15 (16)
C19A—C17A—H17A	107.4	N1E—C8E—H8E	108.2
C17A—C18A—H18A	109.5	C10E—C8E—H8E	108.2
C17A—C18A—H18B	109.5	C9E—C8E—H8E	108.2
H18A—C18A—H18B	109.5	C8E—C9E—H9E1	109.5
C17A - C18A - H18C	109.5	C8E - C9E - H9E2	109.5
H18A - C18A - H18C	109.5	H9F1 - C9F - H9F2	109.5
H18B-C18A-H18C	109.5	C8E - C9E - H9E3	109.5
C17A - C19A - H19A	109.5	H9F1 - C9F - H9F3	109.5
C17A - C19A - H19B	109.5	H9F2 - C9F - H9F3	109.5
H19A - C19A - H19B	109.5	C8E C10E H10M	109.5
C17A - C19A - H19C	109.5	C8E - C10E - H10N	109.5
H19A - C19A - H19C	109.5	H10M $-C10F$ H10N	109.5
$H_{10}R_{-C_{10}A_{-H_{10}C_{-H_{1$	109.5	C8E - C10E - H10O	109.5
N1B_C1B_N2B	107.5 112 13 (15)	H10M $C10E$ $H10O$	109.5
NIB_CIB_C2B	12.15 (15)	HION_CIOE_HIOO	109.5
N2B C1B C2B	124.30(15) 123.20(15)	CIE N2E C17E	107.5 137.4(3)
C_{2B} C_{2B} C_{7B}	123.29(15) 118.60(16)	C1E = N2E = C11E	137.4(3)
C_{3B} C_{2B} C_{1B}	118.09 (10)	C1E = N2E = A12	117.09(17) 01.62(10)
C7P $C2P$ $C1P$	120.04(10) 121.27(15)	C12 = N2E = A12	31.02(10)
C/B = C2B = C4B	121.27(13) 120.71(18)	C1/E = N2E = A12	150.0(3)
$C_{2}D = C_{3}D = U_{4}D$	120.71 (18)	CITE—NZE—AIZ	130.30(13)
C_{2B} C_{3B} H_{3B}	119.0	N2E-CIIE-CI2E	109.1(6)
C4B - C3B - H3B	119.0	N2E-CIIE-CI3E	111.7(3)
$C_{2}B = C_{4}B = C_{2}B$	120.00 (18)	CI2E—CIIE—CI3E	108.0 (6)
$C_{2}D = C_{4}D = H_{4}D$	120.0	N2E-CIIE-HIIE	109.3
C3B—C4B—H4B	120.0	CI2E—CIIE—HIIE	109.3
C6B—C5B—C4B	119.94 (17)	CI3E—CIIE—HIIE	109.3
Сов—Сов—Нов	120.0	CITE—CIZE—HI2M	109.5
	120.0	UTIE—CI2E—HI2N	109.5
Сэв—С6в—С/В	120.01 (17)	H12M—C12E—H12N	109.5
С5В—С6В—Н6В	120.0	C11E—C12E—H12O	109.5
C7B—C6B—H6B	120.0	H12M—C12E—H12O	109.5

C6B - C7B - C2B	120 65 (17)	H12N—C12E—H12O	109 5
C6B-C7B-H7B	1197	C11E— $C13E$ — $H13M$	109.5
C2B—C7B—H7B	119.7	C11E— $C13E$ — $H13N$	109.5
C1B $N1B$ $C8B$	121 75 (14)	H13M— $C13E$ — $H13N$	109.5
C1B $N1B$ $A11$	91.05 (10)	C11E - C13E - H13O	109.5
C8B—N1B—A11	146 75 (12)	H13M— $C13F$ — $H13O$	109.5
N1B-C8B-C9B	110.45(12)	H13N— $C13F$ — $H13O$	109.5
N1B - C8B - C10B	111.82 (15)	N2F-C17F-C19F	109.3 108.7(5)
C9B-C8B-C10B	109.92 (16)	N2E—C17E—C18E	100.7(3) 112.2(14)
N1B-C8B-H8B	108.2	C19F - C17F - C18F	112.2(11) 112.8(11)
C9B-C8B-H8B	108.2	N2F-C17F-H17F	107.6
C10B C8B H8B	108.2	C19F C17F H17F	107.6
C8B - C9B - H9B1	100.2	C18E C17E H17E	107.6
C8B - C9B - H9B2	109.5	C17E - C18E - H18M	107.0
HOR1 COR HOR2	109.5	C17E $C18E$ $H18N$	109.5
$C^{\text{SP}} = C^{\text{SP}} = H^{\text{SP}} = H^{\text{SP}}$	109.5	$\frac{112}{112} - \frac{112}{112} - $	109.5
L0D1 COD L0D2	109.5	C17E C19E U19O	109.5
HOP2 COP HOP2	109.5	L1/E - C10E - H10O	109.5
$P_{1} = P_{1} = P_{1$	109.5	H18M - C18E - H18O	109.5
C8D C10D H10D	109.5	H16N - C18E - H16O	109.5
Communication Clobert	109.5	C17E = C19E = H19M	109.5
HIUD—CIUB—HIUE	109.5	CI/E—CI9E—HI9N	109.5
C8B—C10B—H10F	109.5	H19M - C19E - H19N	109.5
HIOD—CIOB—HIOF	109.5	C1/E - C19E - H19O	109.5
HI0E—CI0B—HI0F	109.5	HI9M—CI9E—HI9O	109.5
N2B—CIIB—CI2B	111.38 (16)	HI9N - CI9E - HI9O	109.5
N2B—CIIB—CI3B	110.85 (15)	N2F—CIF—NIF	111.56 (15)
CI2B—CIIB—CI3B	110.97 (17)	N2F—CIF—C2F	124.68 (16)
N2B—CIIB—HIIB	107.8	NIF—CIF—C2F	123.75 (16)
CI2B—CIIB—HIIB	107.8	C/F—C2F—C3F	118.52 (18)
CI3B—CIIB—HIIB	107.8	C/F—C2F—C1F	121.23 (17)
C11B—C12B—H12D	109.5	C3F—C2F—C1F	120.22 (17)
CIIB—CI2B—HI2E	109.5	C4F—C3F—C2F	120.6 (2)
H12D—C12B—H12E	109.5	C4F—C3F—H3F	119.7
C11B—C12B—H12F	109.5	C2F—C3F—H3F	119.7
H12D—C12B—H12F	109.5	C5F—C4F—C3F	120.0 (2)
H12E—C12B—H12F	109.5	C5F—C4F—H4F	120.0
C1B—N2B—C11B	121.61 (14)	C3F—C4F—H4F	120.0
C1B—N2B—Al1	91.12 (10)	C6F—C5F—C4F	120.01 (19)
C11B—N2B—All	146.07 (12)	C6F—C5F—H5F	120.0
C11B—C13B—H13D	109.5	C4F—C5F—H5F	120.0
C11B—C13B—H13E	109.5	C5F—C6F—C7F	120.2 (2)
H13D—C13B—H13E	109.5	C5F—C6F—H6F	119.9
C11B—C13B—H13F	109.5	C7F—C6F—H6F	119.9
H13D—C13B—H13F	109.5	C2F—C7F—C6F	120.6 (2)
H13E—C13B—H13F	109.5	C2F—C7F—H7F	119.7
N1C—C1C—N2C	111.56 (16)	C6F—C7F—H7F	119.7
N1C—C1C—C2C	124.64 (17)	C1F—N1F—C8F	121.47 (15)
N2C—C1C—C2C	123.80 (17)	C1F—N1F—Al2	91.36 (11)
C7C—C2C—C3C	118.6 (2)	C8F—N1F—Al2	144.40 (12)

C7C—C2C—C1C	121.05 (19)	N1F—C8F—C9F	110.87 (16)
C3C—C2C—C1C	120.32 (19)	N1F-C8F-C10F	112.63 (16)
C2C—C3C—C4	120.2 (2)	C9F—C8F—C10F	109.06 (18)
С2С—С3С—Н3С	119.9	N1F—C8F—H8F	108.0
C4—C3C—H3C	119.9	C9F—C8F—H8F	108.0
C5C—C4—C3C	120.3 (3)	C10F—C8F—H8F	108.0
C5C—C4—H4	119.8	C8F—C9F—H9F1	109.5
C3C—C4—H4	119.8	C8F—C9F—H9F2	109.5
C6C—C5C—C4	119.9 (2)	H9F1—C9F—H9F2	109.5
C6C—C5C—H5C	120.0	C8F—C9F—H9F3	109.5
C4—C5C—H5C	120.0	H9F1—C9F—H9F3	109.5
C5C—C6C—C7C	120.1 (3)	H9F2—C9F—H9F3	109.5
C5C—C6C—H6C	120.0	C8F—C10F—H10P	109.5
C7C—C6C—H6C	120.0	C8F-C10F-H10O	109.5
$C_{2}C_{-}C_{7}C_{-}C_{6}C$	120.9 (2)	H10P—C10F—H10O	109.5
$C_2C_2C_2C_2C_2C_2C_2C_2C_2C_2C_2C_2C_2C$	119 5	C8F-C10F-H10R	109.5
C6C - C7C - H7C	119.5	H10P—C10F—H10R	109.5
C1C-N1C-C11C	122.93 (15)	H100-C10F-H10R	109.5
C1C - N1C - A11	91.86 (11)	C1F N2F C11F	109.5 123.1(3)
$C_{11}C_{N1}C_{A11}$	144 32 (12)	C1F N2F C17F	123.1(3) 123.0(8)
$N_2C - C_8C - C_{10}C$	111 39 (17)	C1F N2F A12	91 50 (11)
$N_{2}C_{-}C_{8}C_{-}C_{9}C_{-}C_{9}C_{-}C_{1}C_{-}C_{-$	110.70(15)	$C11E_N2E_A12$	1442(3)
$C_{10} - C_{8} - C_{9} - C_{$	109.91(17)	$C17E_N2E_A12$	144.2(3) 145.0(8)
$N_{2}C = C_{3}C = H_{3}C$	108.2	$\frac{1}{1} - \frac{1}{1} = \frac{1}$	143.0(8) 111.7(4)
1120 - 030 - 1130	108.2	N2F - C11F - C13F	111.7(4) 110.8(3)
	108.2	$C_{12} = C_{11} = C_{13}$	110.3(3)
$C_{SC} = C_{SC} = H_{SC}$	100.2	N2E C11E H11E	10.5 (5)
	109.5	$C_{12} = C_{11} = H_{11}$	108.0
$H_{0}C_{1} = C_{0}C_{1} = H_{0}C_{2}$	109.5	C12F = C11F = H11F	108.0
$\frac{11901-090-11902}{000}$	109.5		108.0
$H_{0}C_{1} = C_{0}C_{0} = H_{0}C_{2}$	109.5	$C_{111} = C_{121} = H_{120}$	109.5
H9C1 - C9C - H9C3	109.5	$\begin{array}{c} \text{CHF} \\ CHF$	109.5
$C_{2}C_{2}C_{3}C_{1}C_{2}C_{1}C_{2}C_{1}C_{2}C_{2}C_{3}C_{3}C_{3}C_{3}C_{3}C_{3}C_{3}C_{3$	109.5	$\frac{11121}{1121} - \frac{1121}{1121} - \frac{11120}{1121}$	109.5
	109.5	$U_{11} = U_{12} = U_{12} = U_{12}$	109.5
	109.5	H12P - C12F - H12R	109.5
	109.5	H12Q - C12F - H12R	109.5
	109.5		109.5
HI0G-CI0C-HI0I	109.5	UIIF—CI3F—HI3Q	109.5
H10H - C10C - H10I	109.5	HI3P—CI3F—HI3Q	109.5
C1C - N2C - C8C	121.12 (16)	CIIF—CI3F—HI3R	109.5
CIC—N2C—AII	90.98 (11)	HI3P—CI3F—HI3R	109.5
C8C—N2C—All	146.38 (12)	H13Q— $C13F$ — $H13R$	109.5
NIC-CIIC-CI2C	111.03 (16)	N2F = C17F = C18F	106.8 (12)
	110.//(16)	N2F-CI/F-CI9F	109.4 (12)
	110.7 (2)		111.4 (11) 100.7
NIC-CIIC-HIIC	108.1	N2F-CI/F-HI/F	109.7
CI2C—CIIC—HIIC	108.1	CI8F—CI/F—HI/F	109.7
CI3C—CIIC—HIIC	108.1	CI9F—CI/F—HI/F	109.7
CHC—CH2C—H12G	109.5	C1/F—C18F—H18D	109.5
CIIC—C12C—H12H	109.5	CT/F—C18F—H18E	109.5

H12G—C12C—H12H	109.5	H18D—C18F—H18E	109.5
C11C—C12C—H12I	109.5	C17F—C18F—H18F	109.5
H12G—C12C—H12I	109.5	H18D—C18F—H18F	109.5
H12H—C12C—H12I	109.5	H18E—C18F—H18F	109.5
C11C—C13C—H13G	109.5	C17F—C19F—H19D	109.5
С11С—С13С—Н13Н	109.5	C17F—C19F—H19E	109.5
H13G—C13C—H13H	109.5	H19D—C19F—H19E	109.5
C11C—C13C—H13I	109.5	C17F—C19F—H19F	109.5
H13G—C13C—H13I	109.5	H19D—C19F—H19F	109.5
H13H—C13C—H13I	109.5	H19E—C19F—H19F	109.5
N2A—C1A—C2A—C7A	-103.1 (2)	N2D—C1D—C2D—C3D	76.0 (2)
N1A—C1A—C2A—C7A	77.6 (2)	N1D—C1D—C2D—C3D	-104.6(2)
N2A—C1A—C2A—C3A	78.9 (2)	N2D—C1D—C2D—C7D	-103.5 (2)
N1A—C1A—C2A—C3A	-100.5 (2)	N1D—C1D—C2D—C7D	75.9 (2)
C7A—C2A—C3A—C4A	-1.4 (3)	C7D—C2D—C3D—C4D	0.1 (3)
C1A—C2A—C3A—C4A	176.6 (2)	C1D—C2D—C3D—C4D	-179.46 (17)
C2A—C3A—C4A—C5A	0.1 (4)	C2D—C3D—C4D—C5D	-0.2 (3)
C3A—C4A—C5A—C6A	1.1 (4)	C3D—C4D—C5D—C6D	0.1 (3)
C4A—C5A—C6A—C7A	-1.1 (4)	C4D—C5D—C6D—C7D	0.1 (3)
C3A—C2A—C7A—C6A	1.4 (3)	C5D—C6D—C7D—C2D	-0.2(3)
C1A—C2A—C7A—C6A	-176.62 (19)	C3D—C2D—C7D—C6D	0.1 (3)
C5A—C6A—C7A—C2A	-0.2 (3)	C1D—C2D—C7D—C6D	179.68 (18)
N2A—C1A—N1A—C11A	178.1 (2)	N2D—C1D—N1D—C8D	-170.76 (16)
C2A—C1A—N1A—C11A	-2.4 (3)	C2D—C1D—N1D—C8D	9.8 (3)
N2A—C1A—N1A—C17A	167.2 (7)	N2D—C1D—N1D—Al2	-0.72(15)
C2A—C1A—N1A—C17A	-13.3 (7)	C2D—C1D—N1D—A12	179.81 (15)
N2A—C1A—N1A—All	0.87 (15)	C1D— $N1D$ — $C8D$ — $C9D$	124.70 (18)
C2A—C1A—N1A—All	-179.68(15)	Al2—N1D—C8D—C9D	-37.4(3)
N1A—C1A—N2A—C8A	175.16 (19)	C1D—N1D—C8D—C10D	-111.8(2)
C2A—C1A—N2A—C8A	-4.3 (3)	A12—N1D—C8D—C10D	86.1 (3)
N1A—C1A—N2A—C14A	164.0 (9)	N1D—C1D—N2D—C11D	-171.62(15)
C2A—C1A—N2A—C14A	-15.4(9)	C2D-C1D-N2D-C11D	7.9 (3)
N1A—C1A—N2A—All	-0.85(14)	N1D-C1D-N2D-A12	0.72 (15)
C_2A — C_1A — N_2A — A_{11}	179.70 (16)	C2D— $C1D$ — $N2D$ — $A12$	-179.80(15)
C9A—C8A—N2A—C1A	120.5 (3)	C1D-N2D-C11D-C13D	-104.30(19)
C10A—C8A—N2A—C1A	-116.3(3)	Al2—N2D—C11D—C13D	89.5 (2)
C9A - C8A - N2A - C14A	-145(8)	C1D - N2D - C11D - C12D	132.35(17)
C10A - C8A - N2A - C14A	-22(7)	A12 - N2D - C11D - C12D	-33.8(3)
C9A - C8A - N2A - A11	-66.9(4)	N2E-C1E-C2E-C7E	-73.9(2)
C10A - C8A - N2A - A11	56.3 (5)	N1E - C1E - C2E - C7E	106.8(2)
C15A - C14A - N2A - C1A	87 2 (18)	N2E— $C1E$ — $C2E$ — $C3E$	107.1(2)
C16A - C14A - N2A - C1A	-152.0(12)	N1E - C1E - C2E - C3E	-72.3(2)
C15A - C14A - N2A - C8A	-4 (6)	C7E - C2E - C3E - C4E	-0.3(3)
C_{16A} C_{14A} N_{2A} C_{8A}	116 (8)	C1E - C2E - C3E - C4E	$178\ 73\ (18)$
C15A— $C14A$ — $N2A$ — $A11$	-119.1 (15)	C2E - C3E - C4E - C5E	-0.6(3)
C16A— $C14A$ — $N2A$ — $A11$	2 (2)	C3E C4E C5E C6E	1.3 (4)
C1A— $N1A$ — $C11A$ — $C13A$	40.9 (4)	C4E - C5E - C6E - C7E	-1.0(4)
C17A—N1A—C11A—C13A	75 (3)	C3E—C2E—C7E—C6E	0.6 (3)
	· · · · · ·		···· (-)

A11 N1A C11A C12A	142.0(2)	CIE CZE CZE CKE	179 46 (10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-143.0(2) -87.5(3)	C1E - C2E - C/E - C0E	-1/8.40(19)
C17A $N1A$ $C11A$ $C12A$	-53(3)	$C_{2E} = C_{2E} = C_{2E}$	-176.80(15)
CI/A NIA $CIIA$ $CI2A$	-33(3)	NZE-CIE-NIE-COE	-1/0.80(13)
AII—NIA—CIIA—CI2A	88.3(3)	CZE-CIE-NIE-COE	2.0(3)
CIA - NIA - CI/A - CI8A	-120.7(14)	NZE-CIE-NIE-AI2	-0.01(14)
CIIA - NIA - CI/A - CI8A	87 (3)	C2E—CIE—NIE—AI2	1/9.40 (15)
AII—NIA—CI/A—CI8A	32 (2)		110.61 (19)
CIA—NIA—CI/A—CI9A	115.1 (13)	AI2—NIE—C8E—C10E	-63.7 (3)
CIIA—NIA—CI/A—CI9A	-36.8 (18)	CIE—NIE—C8E—C9E	-126.61 (18)
AII—NIA—CI/A—CI9A	-92.3 (17)	AI2—NIE—C8E—C9E	59.1 (3)
N1B—C1B—C2B—C3B	103.6 (2)	N1E—C1E—N2E—C17E	-173.4 (6)
N2B—C1B—C2B—C3B	-74.5 (2)	C2E—C1E—N2E—C17E	7.2 (6)
N1B—C1B—C2B—C7B	-76.8 (2)	N1E—C1E—N2E—C11E	-175.0(2)
N2B—C1B—C2B—C7B	105.1 (2)	C2E—C1E—N2E—C11E	5.6 (3)
C7B—C2B—C3B—C4B	0.0 (3)	N1E—C1E—N2E—Al2	0.01 (14)
C1B—C2B—C3B—C4B	179.67 (18)	C2E—C1E—N2E—Al2	-179.39 (15)
C2B—C3B—C4B—C5B	0.2 (3)	C1E—N2E—C11E—C12E	118.7 (6)
C3B—C4B—C5B—C6B	-0.4 (3)	C17E—N2E—C11E—C12E	-58.1 (16)
C4B—C5B—C6B—C7B	0.4 (3)	Al2—N2E—C11E—C12E	-51.1 (8)
C5B—C6B—C7B—C2B	-0.1 (3)	C1E—N2E—C11E—C13E	-121.9 (3)
C3B—C2B—C7B—C6B	-0.1 (3)	C17E—N2E—C11E—C13E	61.3 (14)
C1B—C2B—C7B—C6B	-179.73 (17)	Al2—N2E—C11E—C13E	68.3 (5)
N2B—C1B—N1B—C8B	173.84 (15)	C1E—N2E—C17E—C19E	-44.8 (10)
C2B—C1B—N1B—C8B	-4.5 (3)	C11E—N2E—C17E—C19E	-40.6 (10)
N2B—C1B—N1B—Al1	-0.36 (14)	Al2—N2E—C17E—C19E	143.9 (4)
C2B—C1B—N1B—All	-178.70 (15)	C1E—N2E—C17E—C18E	80.7 (15)
C1B—N1B—C8B—C9B	-131.79 (18)	C11E—N2E—C17E—C18E	85 (2)
Al1—N1B—C8B—C9B	37.6 (3)	Al2—N2E—C17E—C18E	-90.6 (14)
C1B—N1B—C8B—C10B	105.45 (19)	N2F—C1F—C2F—C7F	60.3 (2)
A11—N1B—C8B—C10B	-85.2 (2)	N1F—C1F—C2F—C7F	-118.3(2)
N1B—C1B—N2B—C11B	170.92 (15)	N2F—C1F—C2F—C3F	-121.9(2)
C2B—C1B—N2B—C11B	-10.7(2)	N1F—C1F—C2F—C3F	59.4 (2)
N1B-C1B-N2B-A11	0.36 (14)	C7F—C2F—C3F—C4F	-0.6(3)
C2B-C1B-N2B-A11	178 73 (14)	C1F - C2F - C3F - C4F	-17845(17)
C12B— $C11B$ — $N2B$ — $C1B$	118 59 (19)	C2F - C3F - C4F - C5F	0.8(3)
C13B— $C11B$ — $N2B$ — $C1B$	-117.33(18)	C3F - C4F - C5F - C6F	-0.2(3)
C12B - C11B - N2B - A11	-785(3)	C4F C5F C6F C7F	-0.5(3)
C12B = C11B = N2B = A11	45.6 (3)	C_{3E} C_{2E} C_{7E} C_{6E}	-0.1(3)
$\frac{1}{2} \frac{1}{2} \frac{1}$	-751(3)	C_{1}^{1} C_{2}^{1} C_{7}^{1} C_{6}^{1}	177 67 (18)
N2C C1C C2C C7C	104.0(2)	$C_{11} = C_{21} = C_{11} = C_{01}$	177.07(10)
$N_{2}C_{-}C_{1}C_{-}C_{2}C_{-}C_{7$	104.0(2) 106.8(2)	$C_{21} = C_{12} = C_{12} = C_{21}$	-166.75(15)
N1C - C1C - C2C - C3C	74.2(2)	$\begin{array}{cccc} \mathbf{N}\mathbf{Z}\mathbf{F} & -\mathbf{C}\mathbf{N}\mathbf{F} & -\mathbf{C}\mathbf{S}\mathbf{F} \\ \mathbf{C}\mathbf{Z}\mathbf{E} & \mathbf{C}\mathbf{I}\mathbf{E} & \mathbf{N}\mathbf{I}\mathbf{E} & \mathbf{C}\mathbf{S}\mathbf{E} \end{array}$	100.75(15)
$N_2 = C_1 = C_2 = C_3 C_3 = C_4 = C_3 C_4 = C_3 C_4 = C_3 C_4 = C_3 C_4 = C_$	-74.2(3)	C_{2F} C_{1F} N_{1F} C_{0F}	12.1(3)
$C/C = C_2 C = C_3 C = C_4$	0.8(3)	$N_{2}F = C_{1}F = N_{1}F = A_{1}^{2}$	-1.23(14)
$C_1 C_2 C_2 C_4 C_5 C_4$	1/9.0(2)	$C_{1} = C_{1} = C_{2} = C_{2}$	1//.30(13)
$C_2 C_2 C_3 C_2 C_4 C_5 C_2 C_5 C_5 C_5 C_5 C_5 C_5 C_5 C_5 C_5 C_5$	-0.6 (4)	CIF - NIF - C8F - C9F	118.5 (2)
$C_3C - C_4 - C_5C - C_6C$	-0.5(4)	A12 - N1F - C8F - C9F	-36.0 (3)
C4 - C5C - C6C - C7/C	1.2 (4)	CIF-NIF-C8F-C10F	-118.93 (19)
C3C—C2C—C7C—C6C	0.0 (3)	AI2—N1F—C8F—C10F	86.5 (2)
C1C—C2C—C7C—C6C	-178.2(2)	N1F—C1F—N2F—C11F	-168.8(3)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5C C6C C7C C2C	1.0(4)	COE CIE NOE CIIE	12.4(2)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$C_{3}C_{-}C_{0}C_{-}C_{-}C_{-}C_{2}C_{-}C_{-}C_{2}C_{-}C_{-}C_{-}C_{-}C_{-}C_{-}C_{-}C_{-$	-1.0 (4)	C2F-CIF-N2F-CIIF	12.4 (3)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	N2C—C1C—N1C—C11C	171.40 (15)	N1F—C1F—N2F—C17F	-172.5 (8)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C2C—C1C—N1C—C11C	-9.4 (3)	C2F—C1F—N2F—C17F	8.7 (8)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	N2C—C1C—N1C—All	-0.18 (16)	N1F—C1F—N2F—Al2	1.26 (14)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C2C—C1C—N1C—All	178.99 (17)	C2F—C1F—N2F—Al2	-177.55 (15)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	N1C—C1C—N2C—C8C	169.67 (16)	C1F—N2F—C11F—C12F	117.7 (4)
N1C—C1C—N2C—All $0.17 (15)$ Al2—N2F—C11F—C12F $-45.2 (6)$ C2C—C1C—N2C—All $-179.00 (17)$ C1F—N2F—C11F—C13F $-118.9 (5)$ C10C—C8C—N2C—C1C $112.2 (2)$ C17F—N2F—C11F—C13F $-29 (20)$ C9C—C8C—N2C—C1C $-125.21 (19)$ Al2—N2F—C11F—C13F $78.2 (6)$ C10C—C8C—N2C—All $-87.1 (3)$ C1F—N2F—C17F—C18F $97.8 (13)$ C9C—C8C—N2C—All $35.6 (3)$ C11F—N2F—C17F—C18F $6 (19)$ C1C—N1C—C11C—C12C $130.3 (2)$ Al2—N2F—C17F—C18F $-71.2 (16)$ Al1—N1C—C11C—C12C $-64.2 (3)$ C1F—N2F—C17F—C19F $-141.5 (10)$ C1C—N1C—C11C—C13C $-106.2 (2)$ C11F—N2F—C17F—C19F $127 (21)$ Al1—N1C—C11C—C13C $59.3 (3)$ Al2—N2F—C17F—C19F $49.5 (18)$	C2C—C1C—N2C—C8C	-9.5 (3)	C17F—N2F—C11F—C12F	-152 (21)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	N1C—C1C—N2C—All	0.17 (15)	Al2—N2F—C11F—C12F	-45.2 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2C—C1C—N2C—All	-179.00 (17)	C1F—N2F—C11F—C13F	-118.9 (5)
C9C—C8C—N2C—C1C -125.21 (19) Al2—N2F—C11F—C13F 78.2 (6) C10C—C8C—N2C—Al1 -87.1 (3) C1F—N2F—C17F—C18F 97.8 (13) C9C—C8C—N2C—Al1 35.6 (3) C11F—N2F—C17F—C18F 6 (19) C1C—N1C—C11C—C12C 130.3 (2) Al2—N2F—C17F—C18F -71.2 (16) Al1—N1C—C11C—C12C -64.2 (3) C1F—N2F—C17F—C19F -141.5 (10) C1C—N1C—C11C—C13C -106.2 (2) C11F—N2F—C17F—C19F 127 (21) Al1—N1C—C11C—C13C 59.3 (3) Al2—N2F—C17F—C19F 49.5 (18)	C10C—C8C—N2C—C1C	112.2 (2)	C17F—N2F—C11F—C13F	-29 (20)
C10C—C8C—N2C—Al1 -87.1 (3) C1F—N2F—C17F—C18F 97.8 (13) C9C—C8C—N2C—Al1 35.6 (3) C11F—N2F—C17F—C18F 6 (19) C1C—N1C—C11C—C12C 130.3 (2) Al2—N2F—C17F—C18F -71.2 (16) Al1—N1C—C11C—C12C -64.2 (3) C1F—N2F—C17F—C19F -141.5 (10) C1C—N1C—C11C—C13C -106.2 (2) C11F—N2F—C17F—C19F 127 (21) Al1—N1C—C11C—C13C 59.3 (3) Al2—N2F—C17F—C19F 49.5 (18)	C9C—C8C—N2C—C1C	-125.21 (19)	Al2—N2F—C11F—C13F	78.2 (6)
C9C—C8C—N2C—All 35.6 (3) C11F—N2F—C17F—C18F 6 (19) C1C—N1C—C11C—C12C 130.3 (2) Al2—N2F—C17F—C18F -71.2 (16) Al1—N1C—C11C—C12C -64.2 (3) C1F—N2F—C17F—C19F -141.5 (10) C1C—N1C—C11C—C13C -106.2 (2) C11F—N2F—C17F—C19F 127 (21) Al1—N1C—C11C—C13C 59.3 (3) Al2—N2F—C17F—C19F 49.5 (18)	C10C—C8C—N2C—Al1	-87.1 (3)	C1F—N2F—C17F—C18F	97.8 (13)
C1C—N1C—C11C—C12C 130.3 (2) Al2—N2F—C17F—C18F -71.2 (16) Al1—N1C—C11C—C12C -64.2 (3) C1F—N2F—C17F—C19F -141.5 (10) C1C—N1C—C11C—C13C -106.2 (2) C11F—N2F—C17F—C19F 127 (21) Al1—N1C—C11C—C13C 59.3 (3) Al2—N2F—C17F—C19F 49.5 (18)	C9C—C8C—N2C—Al1	35.6 (3)	C11F—N2F—C17F—C18F	6 (19)
All-N1C-C11C-C12C -64.2 (3) C1F-N2F-C17F-C19F -141.5 (10) C1C-N1C-C11C-C13C -106.2 (2) C11F-N2F-C17F-C19F 127 (21) All-N1C-C11C-C13C 59.3 (3) Al2-N2F-C17F-C19F 49.5 (18)	C1C—N1C—C11C—C12C	130.3 (2)	Al2-N2F-C17F-C18F	-71.2 (16)
C1C—N1C—C11C—C13C -106.2 (2) C11F—N2F—C17F—C19F 127 (21) Al1—N1C—C11C—C13C 59.3 (3) Al2—N2F—C17F—C19F 49.5 (18)	All—N1C—C11C—C12C	-64.2 (3)	C1F—N2F—C17F—C19F	-141.5 (10)
All—N1C—C11C—C13C 59.3 (3) Al2—N2F—C17F—C19F 49.5 (18)	C1C—N1C—C11C—C13C	-106.2 (2)	C11F—N2F—C17F—C19F	127 (21)
	All—N1C—C11C—C13C	59.3 (3)	Al2—N2F—C17F—C19F	49.5 (18)

(AIPhCNiPr22Cl) Chloridobis(N,N'-diisopropylbenzimidamido)aluminium(III)

Crystal data

[Al(C₁₃H₁₉N₂)₂Cl] $M_r = 469.03$ Monoclinic, $P2_1/c$ a = 19.205 (1) Å b = 16.4832 (9) Å c = 17.8498 (10) Å $\beta = 106.287$ (1)° V = 5423.8 (5) Å³ Z = 8

Data collection

Bruker SMART APEXII area-detector	100296 measured reflections
diffractometer	10641 independent reflections
Radiation source: sealed tube	7375 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.080$
Detector resolution: 8.333 pixels mm ⁻¹	$\theta_{\rm max} = 26.0^{\circ}, \theta_{\rm min} = 1.7^{\circ}$
φ and ω scans	$h = 0 \rightarrow 23$
Absorption correction: multi-scan	$k = -20 \rightarrow 0$
(TWINABS; Sheldrick, 2008)	$l = -22 \rightarrow 21$
$T_{\min} = 0.858, T_{\max} = 0.973$	

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.090$ S = 1.0010641 reflections 593 parameters 0 restraints Primary atom site location: structure-invariant direct methods F(000) = 2016 $D_x = 1.149 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 8832 reflections $\theta = 2.2-25.1^{\circ}$ $\mu = 0.19 \text{ mm}^{-1}$ T = 100 KPrism, yellow $0.21 \times 0.20 \times 0.14 \text{ mm}$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.010P)^2 + 4.680P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.45$ e Å⁻³ $\Delta\rho_{min} = -0.31$ e Å⁻³

Special details

Experimental. Integrated as non-merohedrally split crystal. Single reflection set is generated based on the reflections of the first component and overlapped reflections of the first and second components.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. H atoms were positioned from geometric considerations and refined as riding on the attached atoms with orientation of CH3 groups optimized. U_{iso} of H atoms were contrained to be 20% larger than Ueqv of the attached atom (50% larger for CH3 groups).

 $U_{\rm iso} * / U_{\rm eq}$ х Ζ v A11 0.40996 (3) 0.30415 (4) 0.46657 (4) 0.02013 (15) C11 0.48446(3)0.33724(3)0.39740(3)0.02442(13)C1A 0.45647 (11) 0.34633 (12) 0.59834 (13) 0.0226 (5) C2A 0.0229(5)0.48630(12) 0.37850(13) 0.67933(12)C3A 0.51624 (12) 0.45585(13) 0.69101 (13) 0.0269(5)H3A 0.5171 0.4886 0.6475 0.032* C4A 0.54482 (12) 0.48525 (14) 0.76596(14) 0.0311 (6) 0.037* H4A 0.5661 0.5377 0.7738 C5A 0.54242 (13) 0.43847 (15) 0.82921 (14) 0.0362 (6) H5A 0.5614 0.4591 0.8806 0.043* C6A 0.51261 (14) 0.36187 (15) 0.81813 (14) 0.0382 (6) H6A 0.5114 0.3298 0.8619 0.046* C7A 0.74348 (13) 0.48443 (13) 0.33143 (14) 0.0312 (6) H7A 0.4639 0.2786 0.7360 0.037* N1A 0.39906 (9) 0.37715 (10) 0.54562 (10) 0.0239 (4) C11A 0.34861 (12) 0.43629 (14) 0.56244 (13) 0.0281 (5) 0.034* H11A 0.3687 0.4558 0.6173 C12A 0.27567 (13) 0.39630(16) 0.55493 (16) 0.0400 (6) 0.060* H12A 0.2558 0.3759 0.5016 0.060* H12B 0.2422 0.4361 0.5665 0.060* H12C 0.2820 0.3511 0.5919 C13A 0.34198 (13) 0.50824 (14) 0.50763 (15) 0.0356(6) H13A 0.3898 0.5329 0.5148 0.053* H13B 0.3088 0.5484 0.5192 0.053* H13C 0.3230 0.4898 0.4535 0.053* 0.56825 (10) N2A 0.48408 (9) 0.28481 (10) 0.0223 (4) C21A 0.55718 (12) 0.25225 (13) 0.60462 (14) 0.0276 (5) H21A 0.5635 0.2450 0.6618 0.033* 0.16986 (14) C22A 0.56353 (13) 0.56882 (14) 0.0338 (6) H22A 0.5286 0.1322 0.5808 0.051* H22B 0.6128 0.1488 0.5905 0.051* H22C 0.5533 0.1755 0.5121 0.051* C23A 0.61602 (13) 0.30916(15) 0.59374(16)0.0415(7)H23A 0.6106 0.3164 0.5379 0.062* 0.062* H23B 0.6638 0.2859 0.6189 H23C 0.3618 0.6174 0.062* 0.6116

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C1B	0.30417 (11)	0.24168 (13)	0.38434 (12)	0.0212 (5)
C2B	0.24110 (11)	0.19646 (13)	0.33379 (12)	0.0227 (5)
C3B	0.25077 (12)	0.14563 (14)	0.27549 (13)	0.0283 (5)
H3B	0.2971	0.1412	0.2666	0.034*
C4B	0.19276 (13)	0.10123 (15)	0.23016 (14)	0.0344 (6)
H4B	0.1992	0.0675	0.1894	0.041*
C5B	0.12579 (14)	0.10598 (16)	0.24418 (15)	0.0393 (6)
H5B	0.0863	0.0749	0.2136	0.047*
C6B	0.11620 (13)	0.15570 (16)	0.30243 (15)	0.0388 (6)
H6B	0.0701	0.1587	0.3121	0.047*
C7B	0.17323 (12)	0.20128 (14)	0.34691 (13)	0.0295 (5)
H7B	0.1661	0.2360	0.3866	0.035*
N1B	0.35512 (9)	0.20577 (10)	0.44238 (10)	0.0213 (4)
C11B	0.34447 (12)	0.12476 (13)	0.47142 (13)	0.0256 (5)
H11B	0.2934	0.1079	0.4452	0.031*
C12B	0.35318 (13)	0.12823 (15)	0.55884 (13)	0.0348 (6)
H12D	0.4028	0.1447	0.5862	0.052*
H12E	0.3435	0.0745	0.5773	0.052*
H12F	0.3189	0.1676	0.5693	0.052*
C13B	0.39439 (13)	0.06279 (13)	0.45069 (14)	0.0329 (6)
H13D	0.3859	0.0616	0.3939	0.049*
H13E	0.3845	0.0091	0.4689	0.049*
H13F	0.4450	0.0777	0.4758	0.049*
N2B	0.31993 (9)	0.31941 (10)	0.38067 (10)	0.0220 (4)
C21B	0.28949 (12)	0.37497 (13)	0.31475 (13)	0.0272 (5)
H21B	0.3180	0.4264	0.3275	0.033*
C22B	0.21167 (13)	0.39796 (15)	0.30638 (15)	0.0383 (6)
H22D	0.1804	0.3506	0.2892	0.058*
H22E	0.1971	0.4414	0.2677	0.058*
H22F	0.2069	0.4168	0.3568	0.058*
C23B	0.30095 (13)	0.34464 (14)	0.23853 (13)	0.0319 (6)
H23D	0.3521	0.3306	0.2468	0.048*
H23E	0.2872	0.3873	0.1988	0.048*
H23F	0.2709	0.2965	0.2209	0.048*
Al2	0.09906 (3)	0.69869 (4)	0.04045 (4)	0.01958 (14)
Cl2	0.03433 (3)	0.64402 (3)	0.11154 (3)	0.02421 (13)
C1C	0.19838 (11)	0.77567 (12)	0.11760 (12)	0.0207 (5)
C2C	0.25703 (11)	0.82799 (13)	0.16634 (12)	0.0212 (5)
C3C	0.32648 (12)	0.82681 (13)	0.15708 (13)	0.0265 (5)
H3C	0.3376	0.7907	0.1206	0.032*
C4C	0.37958 (13)	0.87813 (14)	0.20084 (13)	0.0308 (6)
H4C	0.4268	0.8776	0.1938	0.037*
C5C	0.36378 (13)	0.93017 (14)	0.25483 (13)	0.0308 (6)
H5C	0.4001	0.9658	0.2844	0.037*
C6C	0.29541 (13)	0.93037 (14)	0.26565 (13)	0.0309 (6)
H6C	0.2851	0.9650	0.3037	0.037*
C7C	0.24181 (12)	0.88011 (13)	0.22103 (13)	0.0267 (5)
H7C	0.1945	0.8812	0.2278	0.032*
N1C	0.19321 (9)	0.69659 (10)	0.12535 (10)	0.0217 (4)

C11C	0.23760 (12)	0.65363 (13)	0.19509 (13)	0.0272 (5)
H11C	0.2856	0.6817	0.2133	0.033*
C12C	0.25070 (15)	0.56752 (14)	0.17359 (15)	0.0420 (7)
H12G	0.2041	0.5394	0.1543	0.063*
H12H	0.2806	0.5393	0.2197	0.063*
H12I	0.2758	0.5680	0.1328	0.063*
C13C	0.20164 (13)	0.65577 (15)	0.26103 (13)	0.0359 (6)
H13G	0.1967	0.7122	0.2761	0.054*
H13H	0.2315	0.6258	0.3060	0.054*
H13I	0.1535	0.6307	0.2434	0.054*
N2C	0.14207 (9)	0.80444 (10)	0.06068 (10)	0.0201 (4)
C21C	0.14526 (12)	0.88486 (13)	0.02560 (13)	0.0247 (5)
H21C	0.1954	0.9067	0.0478	0.030*
C22C	0.13202 (14)	0.87677 (14)	-0.06213 (13)	0.0347 (6)
H22G	0.1676	0.8392	-0.0729	0.052*
H22H	0.1370	0.9300	-0.0845	0.052*
H22I	0.0830	0.8558	-0.0856	0.052*
C23C	0.09284 (13)	0.94365 (13)	0.04646 (14)	0.0303 (6)
H23G	0.0432	0.9233	0.0260	0.045*
Н23Н	0.0969	0.9969	0.0236	0.045*
H23I	0.1046	0.9487	0.1033	0.045*
C1D	0.04966 (11)	0.66175 (12)	-0.09242(12)	0.0209 (5)
C2D	0.02093 (11)	0.63235 (13)	-0.17414 (12)	0.0214 (5)
C3D	0.02412 (12)	0.68126 (14)	-0.23634 (13)	0.0283 (5)
H3D	0.0435	0.7345	-0.2269	0.034*
C4D	-0.00084(13)	0.65272 (14)	-0.31228(14)	0.0329 (6)
H4D	0.0019	0.6862	-0.3547	0.039*
C5D	-0.02962(12)	0.57563 (14)	-0.32616 (13)	0.0309 (6)
H5D	-0.0469	0.5562	-0.3782	0.037*
C6D	-0.03325(12)	0.52686 (14)	-0.26466 (13)	0.0286 (5)
H6D	-0.0534	0.4740	-0.2745	0.034*
C7D	-0.00768(12)	0.55463 (13)	-0.18853(13)	0.0263 (5)
H7D	-0.0097	0.5206	-0.1463	0.032*
NID	0.01586 (9)	0.71126 (10)	-0.05597(10)	0.0227 (4)
C11D	-0.06152(12)	0.73053 (14)	-0.08691(13)	0.0282 (5)
H11D	-0.0729	0.7380	-0.1447	0.034*
C12D	-0.07695(13)	0.80964 (16)	-0.05082(14)	0.0407 (7)
H12J	-0.0628	0.8044	0.0061	0.061*
H12K	-0.1289	0.8220	-0.0696	0.061*
H12L	-0.0491	0.8536	-0.0657	0.061*
C13D	-0.10924(13)	0.66258 (16)	-0.07050(15)	0.0421 (7)
H13J	-0.0988	0.6121	-0.0943	0.063*
H13K	-0.1604	0.6769	-0.0927	0.063*
H13L	-0.0991	0.6551	-0.0140	0.063*
N2D	0.11453 (9)	0.63989 (11)	-0.04533 (10)	0.0227 (4)
C21D	0.16736 (13)	0.59264 (15)	-0.07247 (14)	0.0355 (6)
H21D	0.1514	0.5919	-0.1308	0.043*
C22D	0.24112 (13)	0.63313 (18)	-0.04624 (16)	0.0460 (7)
H22J	0.2386	0.6866	-0.0708	0.069*

supplementary materials

H22K	0.2769	0.5995	-0.0616	0.069*
H22L	0.2555	0.6394	0.0106	0.069*
C23D	0.16898 (15)	0.50588 (16)	-0.04362 (18)	0.0570 (9)
H23J	0.1840	0.5054	0.0136	0.086*
H23K	0.2035	0.4742	-0.0630	0.086*
H23L	0.1205	0.4820	-0.0628	0.086*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
A11	0.0243 (3)	0.0176 (3)	0.0185 (3)	0.0012 (3)	0.0061 (3)	-0.0007 (3)
Cl1	0.0279 (3)	0.0244 (3)	0.0238 (3)	-0.0044 (2)	0.0118 (2)	0.0012 (2)
C1A	0.0272 (12)	0.0177 (11)	0.0240 (12)	-0.0022 (9)	0.0088 (10)	0.0009 (9)
C2A	0.0270 (12)	0.0220 (12)	0.0192 (12)	0.0010 (9)	0.0056 (9)	-0.0022 (9)
C3A	0.0319 (13)	0.0223 (12)	0.0260 (13)	0.0006 (10)	0.0071 (10)	-0.0006 (10)
C4A	0.0342 (14)	0.0247 (13)	0.0323 (14)	-0.0038 (11)	0.0058 (11)	-0.0062 (11)
C5A	0.0458 (16)	0.0365 (15)	0.0225 (13)	-0.0030 (12)	0.0034 (11)	-0.0093 (11)
C6A	0.0579 (17)	0.0338 (14)	0.0222 (13)	-0.0019 (13)	0.0102 (12)	0.0031 (11)
C7A	0.0418 (15)	0.0236 (12)	0.0276 (13)	-0.0065 (11)	0.0086 (11)	-0.0004 (10)
N1A	0.0276 (10)	0.0213 (10)	0.0221 (10)	0.0072 (8)	0.0057 (8)	-0.0026 (8)
C11A	0.0302 (13)	0.0292 (13)	0.0247 (13)	0.0075 (10)	0.0074 (10)	-0.0060 (10)
C12A	0.0387 (15)	0.0424 (16)	0.0443 (16)	0.0083 (12)	0.0201 (13)	0.0004 (13)
C13A	0.0384 (15)	0.0240 (13)	0.0438 (16)	0.0084 (11)	0.0106 (12)	-0.0027 (11)
N2A	0.0257 (10)	0.0187 (9)	0.0209 (10)	0.0031 (8)	0.0037 (8)	-0.0015 (8)
C21A	0.0253 (12)	0.0270 (12)	0.0264 (13)	0.0055 (10)	0.0004 (10)	-0.0015 (10)
C22A	0.0336 (14)	0.0313 (13)	0.0321 (14)	0.0105 (11)	0.0017 (11)	-0.0036 (11)
C23A	0.0277 (14)	0.0375 (15)	0.0548 (18)	0.0023 (12)	0.0044 (12)	-0.0082 (13)
C1B	0.0213 (11)	0.0263 (12)	0.0175 (11)	0.0017 (9)	0.0079 (9)	-0.0010 (9)
C2B	0.0262 (12)	0.0210 (11)	0.0198 (12)	-0.0003 (10)	0.0045 (9)	0.0056 (9)
C3B	0.0258 (12)	0.0320 (13)	0.0259 (13)	-0.0011 (10)	0.0054 (10)	0.0022 (10)
C4B	0.0389 (15)	0.0341 (14)	0.0257 (13)	-0.0047 (12)	0.0020 (11)	-0.0011 (11)
C5B	0.0338 (15)	0.0415 (15)	0.0356 (15)	-0.0142 (12)	-0.0018 (12)	0.0086 (12)
C6B	0.0281 (13)	0.0473 (16)	0.0403 (16)	-0.0046 (12)	0.0082 (11)	0.0138 (13)
C7B	0.0277 (13)	0.0335 (13)	0.0278 (13)	0.0017 (11)	0.0085 (10)	0.0056 (11)
N1B	0.0241 (10)	0.0198 (9)	0.0193 (10)	0.0009 (8)	0.0051 (8)	0.0042 (8)
C11B	0.0276 (12)	0.0212 (12)	0.0265 (13)	-0.0042 (10)	0.0052 (10)	0.0065 (10)
C12B	0.0443 (15)	0.0322 (14)	0.0305 (14)	0.0056 (12)	0.0146 (12)	0.0117 (11)
C13B	0.0461 (15)	0.0202 (12)	0.0300 (14)	-0.0035 (11)	0.0070 (12)	0.0007 (10)
N2B	0.0295 (10)	0.0172 (9)	0.0191 (10)	0.0033 (8)	0.0066 (8)	0.0021 (7)
C21B	0.0347 (13)	0.0219 (12)	0.0244 (13)	0.0042 (10)	0.0073 (10)	0.0052 (10)
C22B	0.0385 (15)	0.0381 (15)	0.0379 (15)	0.0080 (12)	0.0099 (12)	0.0133 (12)
C23B	0.0419 (14)	0.0289 (13)	0.0237 (13)	0.0024 (11)	0.0071 (11)	0.0045 (10)
Al2	0.0237 (3)	0.0166 (3)	0.0190 (3)	0.0011 (3)	0.0068 (3)	0.0000 (3)
Cl2	0.0264 (3)	0.0266 (3)	0.0213 (3)	-0.0061 (2)	0.0096 (2)	0.0024 (2)
C1C	0.0255 (12)	0.0221 (12)	0.0179 (11)	0.0014 (9)	0.0116 (9)	0.0005 (9)
C2C	0.0246 (11)	0.0190 (11)	0.0191 (11)	-0.0012 (9)	0.0044 (9)	0.0040 (9)
C3C	0.0320 (13)	0.0261 (12)	0.0232 (12)	0.0007 (10)	0.0109 (10)	-0.0008 (10)
C4C	0.0294 (13)	0.0336 (14)	0.0306 (14)	-0.0058 (11)	0.0107 (11)	0.0024 (11)
C5C	0.0360 (14)	0.0287 (13)	0.0247 (13)	-0.0096 (11)	0.0034 (11)	-0.0005 (10)
C6C	0.0371 (14)	0.0298 (13)	0.0250 (13)	-0.0024 (11)	0.0073 (11)	-0.0046 (10)

C7C	0.0265 (12)	0.0305 (13)	0.0235 (12)	0.0003 (10)	0.0075 (10)	-0.0014 (10)
N1C	0.0249 (10)	0.0178 (9)	0.0214 (10)	0.0018 (8)	0.0048 (8)	0.0032 (8)
C11C	0.0293 (12)	0.0236 (12)	0.0255 (13)	0.0014 (10)	0.0024 (10)	0.0075 (10)
C12C	0.0542 (17)	0.0272 (14)	0.0401 (16)	0.0095 (12)	0.0060 (13)	0.0113 (12)
C13C	0.0395 (14)	0.0409 (15)	0.0245 (13)	0.0002 (12)	0.0043 (11)	0.0081 (11)
N2C	0.0234 (9)	0.0172 (9)	0.0192 (10)	0.0012 (8)	0.0051 (8)	0.0032 (8)
C21C	0.0285 (12)	0.0190 (11)	0.0272 (13)	0.0010 (10)	0.0089 (10)	0.0047 (9)
C22C	0.0518 (16)	0.0281 (13)	0.0272 (14)	0.0052 (12)	0.0159 (12)	0.0077 (11)
C23C	0.0362 (14)	0.0203 (12)	0.0329 (14)	0.0025 (10)	0.0071 (11)	0.0010 (10)
C1D	0.0268 (12)	0.0156 (11)	0.0213 (12)	-0.0010 (9)	0.0082 (9)	0.0005 (9)
C2D	0.0221 (11)	0.0207 (11)	0.0219 (12)	0.0024 (9)	0.0070 (9)	-0.0021 (9)
C3D	0.0356 (14)	0.0245 (12)	0.0251 (13)	-0.0038 (10)	0.0090 (10)	-0.0020 (10)
C4D	0.0427 (15)	0.0339 (14)	0.0233 (13)	-0.0026 (12)	0.0111 (11)	0.0021 (11)
C5D	0.0348 (14)	0.0380 (14)	0.0206 (13)	-0.0026 (11)	0.0088 (10)	-0.0085 (11)
C6D	0.0302 (13)	0.0237 (12)	0.0312 (14)	-0.0036 (10)	0.0073 (11)	-0.0077 (10)
C7D	0.0308 (13)	0.0229 (12)	0.0253 (13)	0.0000 (10)	0.0078 (10)	0.0017 (10)
N1D	0.0226 (10)	0.0217 (10)	0.0233 (10)	0.0037 (8)	0.0056 (8)	-0.0020 (8)
C11D	0.0252 (12)	0.0345 (13)	0.0225 (12)	0.0078 (10)	0.0027 (10)	-0.0044 (10)
C12D	0.0341 (14)	0.0491 (16)	0.0333 (15)	0.0189 (13)	0.0001 (11)	-0.0098 (12)
C13D	0.0254 (13)	0.0557 (18)	0.0434 (16)	-0.0025 (13)	0.0065 (11)	-0.0035 (14)
N2D	0.0236 (10)	0.0227 (10)	0.0218 (10)	0.0038 (8)	0.0066 (8)	-0.0020 (8)
C21D	0.0312 (14)	0.0446 (16)	0.0294 (14)	0.0120 (12)	0.0063 (11)	-0.0124 (12)
C22D	0.0268 (14)	0.072 (2)	0.0414 (16)	0.0052 (14)	0.0137 (12)	-0.0041 (15)
C23D	0.0465 (18)	0.0330 (16)	0.077 (2)	0.0167 (13)	-0.0068 (15)	-0.0219 (15)

Geometric parameters (Å, °)

Al1—N1A	1.9102 (18)	Al2—N2D	1.9046 (18)
Al1—N1B	1.9157 (18)	Al2—N2C	1.9194 (18)
Al1—N2B	1.9791 (18)	Al2—N1D	2.0039 (18)
Al1—N2A	1.9932 (18)	Al2—N1C	2.0076 (18)
Al1—Cl1	2.2046 (8)	Al2—Cl2	2.2027 (8)
C1A—N2A	1.326 (3)	C1C—N1C	1.317 (3)
C1A—N1A	1.333 (3)	C1C—N2C	1.345 (3)
C1A—C2A	1.495 (3)	C1C—C2C	1.490 (3)
С2А—С3А	1.390 (3)	C2C—C3C	1.389 (3)
C2A—C7A	1.392 (3)	C2C—C7C	1.392 (3)
C3A—C4A	1.383 (3)	C3C—C4C	1.385 (3)
СЗА—НЗА	0.9500	C3C—H3C	0.9500
C4A—C5A	1.379 (3)	C4C—C5C	1.386 (3)
C4A—H4A	0.9500	C4C—H4C	0.9500
C5A—C6A	1.378 (3)	C5C—C6C	1.380 (3)
С5А—Н5А	0.9500	C5C—H5C	0.9500
C6A—C7A	1.384 (3)	C6C—C7C	1.386 (3)
С6А—Н6А	0.9500	C6C—H6C	0.9500
С7А—Н7А	0.9500	C7C—H7C	0.9500
N1A—C11A	1.464 (3)	N1C—C11C	1.477 (3)
C11A—C12A	1.520 (3)	C11C—C12C	1.510 (3)
C11A—C13A	1.520 (3)	C11C—C13C	1.523 (3)
C11A—H11A	1.0000	C11C—H11C	1.0000

C12A—H12A	0.9800	C12C—H12G	0.9800
C12A—H12B	0.9800	С12С—Н12Н	0.9800
C12A—H12C	0.9800	C12C—H12I	0.9800
C13A—H13A	0.9800	C13C—H13G	0.9800
C13A—H13B	0.9800	С13С—Н13Н	0.9800
C13A—H13C	0.9800	С13С—Н13І	0.9800
N2A—C21A	1.473 (3)	N2C—C21C	1.475 (3)
C21A—C22A	1.520 (3)	C21C—C23C	1.517 (3)
C21A—C23A	1.522 (3)	C21C—C22C	1.520 (3)
C21A—H21A	1.0000	C21C—H21C	1.0000
C22A—H22A	0.9800	C22C—H22G	0.9800
C22A—H22B	0.9800	С22С—Н22Н	0.9800
C22A—H22C	0.9800	C22C—H22I	0.9800
С23А—Н23А	0.9800	C23C—H23G	0.9800
C23A—H23B	0.9800	С23С—Н23Н	0.9800
С23А—Н23С	0.9800	C23C—H23I	0.9800
C1B—N2B	1.322 (3)	C1D—N1D	1.322 (3)
C1B—N1B	1.346 (3)	C1D—N2D	1.342 (3)
C1B—C2B	1.491 (3)	C1D—C2D	1.489 (3)
C2B—C3B	1.388 (3)	C2D—C3D	1.387 (3)
C2B—C7B	1.390 (3)	C2D—C7D	1.389 (3)
C3B—C4B	1.388 (3)	C3D—C4D	1.387 (3)
СЗВ—НЗВ	0.9500	C3D—H3D	0.9500
C4B—C5B	1.380 (3)	C4D—C5D	1.380 (3)
C4B—H4B	0.9500	C4D—H4D	0.9500
C5B—C6B	1.376 (4)	C5D—C6D	1.378 (3)
C5B—H5B	0.9500	C5D—H5D	0.9500
C6B—C7B	1.381 (3)	C6D—C7D	1.387 (3)
С6В—Н6В	0.9500	C6D—H6D	0.9500
С7В—Н7В	0.9500	C7D—H7D	0.9500
N1B—C11B	1.467 (3)	N1D—C11D	1.468 (3)
C11B—C13B	1.516 (3)	C11D—C12D	1.520 (3)
C11B—C12B	1.523 (3)	C11D—C13D	1.527 (3)
C11B—H11B	1.0000	C11D—H11D	1.0000
C12B—H12D	0.9800	C12D—H12J	0.9800
C12B—H12E	0.9800	C12D—H12K	0.9800
C12B—H12F	0.9800	C12D—H12L	0.9800
C13B—H13D	0.9800	C13D—H13J	0.9800
C13B—H13E	0.9800	C13D—H13K	0.9800
C13B—H13F	0.9800	C13D—H13L	0.9800
N2B—C21B	1.476 (3)	N2D—C21D	1.465 (3)
C21B—C22B	1.508 (3)	C21D—C22D	1.516 (3)
C21B—C23B	1.522 (3)	C21D—C23D	1.517 (4)
C21B—H21B	1.0000	C21D—H21D	1.0000
C22B—H22D	0.9800	C22D—H22J	0.9800
C22B—H22E	0.9800	C22D—H22K	0.9800
C22B—H22F	0.9800	C22D—H22L	0.9800
C23B—H23D	0.9800	C23D—H23J	0.9800
C23B—H23E	0.9800	C23D—H23K	0.9800

supplementary materials

C23B—H23F	0.9800	C23D—H23L	0.9800
N1A—Al1—N1B	122.18 (8)	N2D—A12—N2C	117.22 (8)
N1A—Al1—N2B	103.84 (8)	N2D—Al2—N1D	68.20 (7)
N1B—A11—N2B	68.12 (7)	N2C—Al2—N1D	105.37 (8)
N1A—Al1—N2A	68.06 (7)	N2D—Al2—N1C	106.71 (8)
N1B—A11—N2A	106.08 (8)	N2C—Al2—N1C	67.95 (7)
N2B—Al1—N2A	166.28 (8)	N1D—Al2—N1C	169.27 (8)
N1A—Al1—Cl1	118.73 (6)	N2D—A12—C12	119.70 (6)
N1B—Al1—Cl1	119.03 (6)	N2C—Al2—Cl2	123.08 (6)
N2B—A11—C11	95.62 (6)	N1D—Al2—Cl2	95.41 (6)
N2A—A11—C11	98.02 (6)	N1C—Al2—Cl2	95.31 (6)
N2A—C1A—N1A	110.55 (19)	N1C—C1C—N2C	111.09 (19)
N2A—C1A—C2A	125.08 (19)	N1C—C1C—C2C	125.32 (19)
N1A—C1A—C2A	124.35 (19)	N2C—C1C—C2C	123.57 (18)
C3A—C2A—C7A	119.5 (2)	C3C—C2C—C7C	119.3 (2)
C3A—C2A—C1A	120.04 (19)	C3C—C2C—C1C	121.08 (19)
C7A—C2A—C1A	120.43 (19)	C7C—C2C—C1C	119.59 (19)
C4A—C3A—C2A	120.1 (2)	C4C—C3C—C2C	120.3 (2)
С4А—С3А—НЗА	119.9	C4C—C3C—H3C	119.9
С2А—С3А—НЗА	119.9	C2C—C3C—H3C	119.9
C5A—C4A—C3A	120.0 (2)	C3C—C4C—C5C	120.0 (2)
С5А—С4А—Н4А	120.0	C3C—C4C—H4C	120.0
СЗА—С4А—Н4А	120.0	C5C—C4C—H4C	120.0
C6A—C5A—C4A	120.2 (2)	C6C—C5C—C4C	120.1 (2)
С6А—С5А—Н5А	119.9	C6C—C5C—H5C	120.0
С4А—С5А—Н5А	119.9	C4C—C5C—H5C	120.0
С5А—С6А—С7А	120.3 (2)	C5C—C6C—C7C	120.1 (2)
С5А—С6А—Н6А	119.8	С5С—С6С—Н6С	120.0
С7А—С6А—Н6А	119.8	С7С—С6С—Н6С	120.0
C6A—C7A—C2A	119.8 (2)	C6C—C7C—C2C	120.3 (2)
C6A—C7A—H7A	120.1	C6C—C7C—H7C	119.9
С2А—С7А—Н7А	120.1	C2C—C7C—H7C	119.9
C1A - N1A - C11A	124.96 (18)	C1C—N1C—C11C	121.34 (18)
C1A - N1A - A11	92.36 (13)	C1C—N1C—Al2	88.97 (13)
C11A—N1A—All	141.91 (15)	C11C - N1C - A12	146.00 (14)
N1A—C11A—C12A	109.87 (19)	N1C-C11C-C12C	109.53 (19)
N1A—C11A—C13A	109.18 (18)	N1C-C11C-C13C	111.13 (18)
C12A— $C11A$ — $C13A$	111.9 (2)	C12C— $C11C$ — $C13C$	111.2 (2)
N1A—C11A—H11A	108.6	N1C-C11C-H11C	108.3
C12A— $C11A$ — $H11A$	108.6	C12C— $C11C$ — $H11C$	108.3
C13A - C11A - H11A	108.6	C13C - C11C - H11C	108.3
C11A - C12A - H12A	109.5	C11C-C12C-H12G	109.5
C11A - C12A - H12B	109.5	C11C—C12C—H12H	109.5
H12A—C12A—H12B	109.5	H12G—C12C—H12H	109.5
C11A—C12A—H12C	109.5	C11C—C12C—H12I	109.5
H12A—C12A—H12C	109.5	H12G—C12C—H12I	109.5
H12B— $C12A$ — $H12C$	109.5	H12H—C12C—H12I	109.5
C11A—C13A—H13A	109.5	C11C—C13C—H13G	109.5

C11A—C13A—H13B	109.5	С11С—С13С—Н13Н	109 5
	109.5		109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5		109.5
	109.5		109.5
	109.5		109.5
HI3B—CI3A—HI3C	109.5		109.5
CIA—N2A—C2IA	122.71 (18)	CIC - N2C - C2IC	121.15 (17)
CIA—N2A—AII	88.97 (13)	CIC—N2C—AI2	91.97 (13)
C21A—N2A—All	143.97 (15)	C21C—N2C—Al2	143.46 (14)
N2A—C21A—C22A	108.62 (18)	N2C—C21C—C23C	111.14 (18)
N2A—C21A—C23A	111.66 (19)	N2C—C21C—C22C	110.10 (18)
C22A—C21A—C23A	110.3 (2)	C23C—C21C—C22C	112.21 (19)
N2A—C21A—H21A	108.7	N2C—C21C—H21C	107.7
C22A—C21A—H21A	108.7	C23C—C21C—H21C	107.7
C23A—C21A—H21A	108.7	C22C—C21C—H21C	107.7
C21A—C22A—H22A	109.5	C21C—C22C—H22G	109.5
C21A—C22A—H22B	109.5	С21С—С22С—Н22Н	109.5
H22A—C22A—H22B	109.5	H22G—C22C—H22H	109.5
C21A—C22A—H22C	109.5	C21C—C22C—H22I	109.5
H22A—C22A—H22C	109.5	H22G-C22C-H22I	109.5
H22B—C22A—H22C	109.5	H22H—C22C—H22I	109.5
С21А—С23А—Н23А	109.5	C21C—C23C—H23G	109.5
C21A—C23A—H23B	109.5	С21С—С23С—Н23Н	109.5
H23A—C23A—H23B	109.5	H23G—C23C—H23H	109.5
$C_{21}A - C_{23}A - H_{23}C$	109.5	C21C—C23C—H23I	109.5
H_{23A} $-C_{23A}$ $-H_{23C}$	109.5	H_{23G} $-C_{23C}$ $-H_{23I}$	109.5
H_{23B} C_{23A} H_{23C}	109.5	H_{23H} C_{23C} H_{23I}	109.5
N2B-C1B-N1B	109.70 (18)	N1D-C1D-N2D	110.81 (18)
N2B— $C1B$ — $C2B$	127 78 (19)	N1D - C1D - C2D	125 81 (19)
N1B - C1B - C2B	127.70(19) 122.53(19)	N2D-C1D-C2D	123.01(19) 123.38(18)
C_{3B} C_{2B} C_{7B}	1193(2)	$C_{3}D_{-}C_{2}D_{-}C_{7}D$	129.50(10) 119.5(2)
C_{3B} C_{2B} C_{1B}	119.9(2) 110.00(10)	C_{3D} C_{2D} C_{1D}	119.5(2)
C7B $C2B$ $C1B$	119.90(19) 120.7(2)	C_{2D} C_{2D} C_{1D}	120.31(1)) 120.01(10)
$CAP C^{2}P C^{2}P$	120.7(2) 120.1(2)	C_{1D} C_{2D} C_{2D}	120.01(19)
C4D = C2D = U2D	120.1 (2)	C4D = C3D = C2D	120.3(2)
	120.0	C4D - C3D - H3D	119.9
C2B—C3B—H3B	120.0	C2D—C3D—H3D	119.9
C_{3B} C_{4B} C_{3B}	120.1 (2)	C_{3D} C_{4D} C_{3D}	119.9 (2)
C3B—C4B—H4B	120.0	CSD—C4D—H4D	120.0
C3B—C4B—H4B	120.0	C3D—C4D—H4D	120.0
C6B—C5B—C4B	120.0 (2)	C6D—C5D—C4D	120.1 (2)
C6B—C5B—H5B	120.0	C6D—C5D—H5D	120.0
C4B—C5B—H5B	120.0	C4D—C5D—H5D	120.0
C5B—C6B—C7B	120.4 (2)	C5D—C6D—C7D	120.3 (2)
C5B—C6B—H6B	119.8	C5D—C6D—H6D	119.8
C7B—C6B—H6B	119.8	C7D—C6D—H6D	119.8
C6B—C7B—C2B	120.1 (2)	C6D—C7D—C2D	119.9 (2)
C6B—C7B—H7B	119.9	C6D—C7D—H7D	120.0
С2В—С7В—Н7В	119.9	C2D—C7D—H7D	120.0
C1B—N1B—C11B	121.91 (18)	C1D—N1D—C11D	122.25 (18)
C1B—N1B—All	92.08 (13)	C1D—N1D—Al2	88.60 (13)

C11B—N1B—Al1	144.38 (14)	C11D—N1D—A12	145.58 (15)
N1B—C11B—C13B	111.50 (18)	N1D-C11D-C12D	108.87 (18)
N1B—C11B—C12B	109.98 (18)	N1D-C11D-C13D	111.59 (19)
C13B—C11B—C12B	112.34 (19)	C12D—C11D—C13D	110.4 (2)
N1B—C11B—H11B	107.6	N1D—C11D—H11D	108.6
C13B—C11B—H11B	107.6	C12D—C11D—H11D	108.6
C12B—C11B—H11B	107.6	C13D—C11D—H11D	108.6
C11B—C12B—H12D	109.5	C11D—C12D—H12J	109.5
C11B—C12B—H12E	109.5	C11D—C12D—H12K	109.5
H12D-C12B-H12E	109.5	H12J—C12D—H12K	109.5
C11B—C12B—H12F	109.5	C11D—C12D—H12L	109.5
H12D-C12B-H12F	109.5	H12J—C12D—H12L	109.5
H12E—C12B—H12F	109.5	H12K—C12D—H12L	109.5
C11B—C13B—H13D	109.5	C11D—C13D—H13J	109.5
C11B—C13B—H13E	109.5	C11D—C13D—H13K	109.5
H13D—C13B—H13E	109.5	H13J—C13D—H13K	109.5
C11B—C13B—H13F	109.5	C11D-C13D-H13L	109.5
H13D— $C13B$ — $H13F$	109.5	H_{13} $-C_{13}$ $-H_{13}$ L_{13}	109.5
H13E— $C13B$ — $H13F$	109.5	H13K—C13D—H13L	109.5
C1B $N2B$ $C21B$	126 56 (18)	C1D - N2D - C21D	122,89 (18)
C1B—N2B—All	90.04 (13)	C1D = N2D = C11D	92.30(13)
$C_{21B} N_{2B} A_{11}$	139 55 (15)	$C_{21}D_{N2}D_{A12}$	144 59 (15)
N2B-C21B-C22B	113 25 (18)	N^2D — C^21D — C^22D	1097(2)
N2B— $C21B$ — $C23B$	112.61 (18)	N2D $C21D$ $C23D$	109.7(2) 109.8(2)
C22B— $C21B$ — $C23B$	112.01(10) 112.4(2)	$C^{22}D - C^{21}D - C^{23}D$	109.0(2) 112.4(2)
N2B-C21B-H21B	105.9	N^2D C^21D H^21D	108.2
$C_{22}B = C_{21}B = H_{21}B$	105.9	$C^{2}D - C^{2}D - H^{2}D$	108.2
C_{23B} C_{21B} H_{21B}	105.9	$C^{23}D - C^{21}D - H^{21}D$	108.2
C_{21B} C_{22B} H_{22D}	109.5	$C_{21}D - C_{22}D - H_{22}I$	109.5
$C_{21B} = C_{22B} = H_{22E}$	109.5	C_{21D} C_{22D} H_{22K}	109.5
H_{2D} C_{22B} H_{22E}	109.5	H22I_C22D_H22K	109.5
$C_{21B} C_{22B} H_{22F}$	109.5	$C_{21}D - C_{22}D - H_{22}L$	109.5
H_{2D} C_{22B} H_{22F}	109.5	H22I_C22D_H22L	109.5
H22F = C22B = H22F	109.5	H22K = C22D = H22I	109.5
$C_{21B} C_{23B} H_{23D}$	109.5	$C_{21}D_{C_{23}}D_{H_{23}}H_{23}$	109.5
$C_{21B} = C_{23B} = H_{23E}$	109.5	$C_{21D} = C_{23D} = H_{23K}$	109.5
H_{23D} C_{23B} H_{23E}	109.5	H23I_C23D_H23K	109.5
C21B_C23B_H23E	109.5	$C_{21}D_{C_{23}}C_{23}D_{H_{23}}H_{23}$	109.5
H_{23D} C_{23B} H_{23F}	109.5	H23L_C23D_H23I	109.5
$H_{23}E_{-}C_{23}B_{-}H_{23}E_{-}H_{23}E_{-}$	109.5	$H_{23}K = C_{23}D = H_{23}L$	109.5
11251 0250 11251	109.5	1125K 025D 1125E	10).5
N2A—C1A—C2A—C3A	113.2 (2)	N1C—C1C—C2C—C3C	73.6 (3)
N1A—C1A—C2A—C3A	-65.1 (3)	N2C—C1C—C2C—C3C	-108.4 (2)
N2A—C1A—C2A—C7A	-66.8 (3)	N1C—C1C—C2C—C7C	-107.6 (3)
N1A—C1A—C2A—C7A	115.0 (3)	N2C—C1C—C2C—C7C	70.4 (3)
C7A—C2A—C3A—C4A	0.9 (3)	C7C—C2C—C3C—C4C	-1.2 (3)
C1A—C2A—C3A—C4A	-179.1 (2)	C1C—C2C—C3C—C4C	177.5 (2)
C2A—C3A—C4A—C5A	-1.2 (3)	C2C—C3C—C4C—C5C	0.8 (3)
C3A—C4A—C5A—C6A	1.0 (4)	C3C—C4C—C5C—C6C	0.7 (4)
			× /

C4A—C5A—C6A—C7A	-0.4(4)	C4C - C5C - C6C - C7C	-1.8(4)
C_{5A} C_{6A} C_{7A} C_{2A}	0.0(4)	$C_{10} = C_{10} = C$	14(3)
C_{3A} C_{2A} C_{7A} C_{6A}	-0.3(3)	$C_{2}C_{-}C_{2}C_{-}C_{2}C_{-}C_{6}C_{-}C_{-}C_{6}C_{-}C_{-}C_{6}C_{-}C_{-}C_{6}C_{-}C_{-}C_{6}C_{-}C_{-}C_{6}C_{-}C_{-}C_{6}C_{-}C_{-}C_{6}C_{-}C_{-}C_{6}C_{-}C_{-}C_{6}C_{-}C_{-}C_{6}C_{-}C_{-}C_{6}C_{-}C_{-}C_{6}C_{-}C_{-}C_{-}C_{6}C_{-}C_{-}C_{-}C_{6}C_{-}C_{-}C_{-}C_{6}C_{-}C_{-}C_{-}C_{6}C_{-}C_{-}C_{-}C_{6}C_{-}C_{-}C_{-}C_{-}C_{-}C_{-}C_{-}C_{-$	0.1(3)
$C_{1A} = C_{2A} = C_{7A} = C_{6A}$	170.7(2)	$C_{1}C_{1}C_{2}C_{1}C_{2}C_{1}C_{2}C_{1}C_{2}C_{2}C_{1}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2$	-1787(2)
N2A C1A N1A C11A	1/9.7(2) 160.42(10)	$\frac{1}{2} = \frac{1}{2} = \frac{1}$	-165.00(18)
N2A—CIA—NIA—CIIA	109.42 (19)		-105.00(18)
C2A—CIA—NIA—CIIA	-12.1(3)		13.2 (3)
N2A—CIA—NIA—AII	-2.45(18)	N2C—CIC—NIC—AI2	-1.29 (17)
C2A—CIA—NIA—AII	1/6.06 (18)	C2C—CIC—NIC—Al2	176.93 (19)
C1A—N1A—C11A—C12A	-109.8 (2)	C1C—N1C—C11C—C12C	-151.4 (2)
All—N1A—C11A—C12A	56.9 (3)	Al2—N1C—C11C—C12C	58.7 (3)
C1A—N1A—C11A—C13A	127.1 (2)	C1C—N1C—C11C—C13C	85.3 (2)
All—N1A—C11A—C13A	-66.1 (3)	Al2—N1C—C11C—C13C	-64.6 (3)
N1A—C1A—N2A—C21A	164.08 (19)	N1C—C1C—N2C—C21C	-162.41 (18)
C2A—C1A—N2A—C21A	-14.4 (3)	C2C—C1C—N2C—C21C	19.3 (3)
N1A—C1A—N2A—All	2.35 (17)	N1C—C1C—N2C—Al2	1.35 (18)
C2A—C1A—N2A—All	-176.15 (19)	C2C—C1C—N2C—Al2	-176.91 (17)
C1A—N2A—C21A—C22A	164.8 (2)	C1C—N2C—C21C—C23C	-112.2 (2)
Al1—N2A—C21A—C22A	-47.4 (3)	Al2—N2C—C21C—C23C	95.8 (3)
C1A—N2A—C21A—C23A	-73.4 (3)	C1C—N2C—C21C—C22C	122.8 (2)
A11— $N2A$ — $C21A$ — $C23A$	74 4 (3)	A12 - N2C - C21C - C22C	-291(3)
N2B-C1B-C2B-C3B	103.6(3)	N1D - C1D - C2D - C3D	79.8 (3)
N1B-C1B-C2B-C3B	-75.9(3)	N2D C1D C2D C3D	-100.9(3)
N2B C1B C2B C7B	-79.7(3)	NID CID C2D C7D	-101.8(3)
N1D C1D C2D C7D	79.7(3)	NID - CID - C2D - C7D	101.8(3)
NIB - CIB - C2B - C7B	100.7(3)	$N_2D = C_1D = C_2D = C_1D$	//.4 (5)
C/B = C2B = C3B = C4B	1.0(3)	C/D = C2D = C3D = C4D	-0.2(3)
C1B—C2B—C3B—C4B	1//./(2)	CID_C2D_C3D_C4D	1/8.2 (2)
C2B—C3B—C4B—C5B	-1.6 (4)	C2D—C3D—C4D—C5D	0.6 (4)
C3B—C4B—C5B—C6B	1.0 (4)	C3D—C4D—C5D—C6D	-0.3 (4)
C4B—C5B—C6B—C7B	0.2 (4)	C4D—C5D—C6D—C7D	-0.4 (3)
C5B—C6B—C7B—C2B	-0.8 (4)	C5D—C6D—C7D—C2D	0.8 (3)
C3B—C2B—C7B—C6B	0.2 (3)	C3D—C2D—C7D—C6D	-0.5 (3)
C1B—C2B—C7B—C6B	-176.5 (2)	C1D—C2D—C7D—C6D	-178.9 (2)
N2B—C1B—N1B—C11B	166.65 (18)	N2D—C1D—N1D—C11D	-166.39 (19)
C2B—C1B—N1B—C11B	-13.7 (3)	C2D-C1D-N1D-C11D	13.0 (3)
N2B—C1B—N1B—All	-2.16 (17)	N2D—C1D—N1D—Al2	-2.60 (17)
C2B—C1B—N1B—Al1	177.48 (17)	C2D—C1D—N1D—Al2	176.75 (19)
C1B—N1B—C11B—C13B	111.4 (2)	C1D—N1D—C11D—C12D	-158.9(2)
A11—N1B—C11B—C13B	-88.1 (3)	Al2—N1D—C11D—C12D	50.7 (3)
C1B— $N1B$ — $C11B$ — $C12B$	-1233(2)	C1D— $N1D$ — $C11D$ — $C13D$	79.0 (3)
A11 - N1B - C11B - C12B	37 2 (3)	A12— $N1D$ — $C11D$ — $C13D$	-715(3)
NIB_CIB_N2B_C2IB	163 53 (19)	$\frac{1}{10} \frac{1}{10} \frac$	-173.06(19)
C2B C1B N2B C21B	-161(3)	$C^{2}D$ $C^{1}D$ $N^{2}D$ $C^{2}D$	76(3)
N1B - C1B - N2B - A11	2.08(17)	$\frac{10}{10} \frac{120}{12} \frac{120}{12} \frac{120}{12}$	2 74 (18)
C2D C1D N2D A11	2.00(17) -1775(2)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.77(10) -176.62(19)
C_{2D} C_{1D} N_{2D} C_{21D} C_{22D}	-1/1.3(2)	C_2D C_1D C_2D C_2D C_2D	-1/0.03(18)
CIB - NZB - CZIB - CZZB	/2.0 (3)	C1D - N2D - C21D - C22D	130.6 (2)
AII—N2B—C2IB—C22B	-136.8 (2)	AI2—N2D—C21D—C22D	-42.1 (4)
C1B—N2B—C21B—C23B	-56.4 (3)	C1D—N2D—C21D—C23D	-105.3(2)
Al1—N2B—C21B—C23B	94.2 (2)	Al2—N2D—C21D—C23D	81.9 (3)

(AIPhCNCy22Cl) Chloridobis(N,N'-dicyclohexylbenzimidamido)aluminium(III) tetrahydrofuran 0.675-solvate

F(000) = 1468 $D_{\rm x} = 1.099 {\rm Mg} {\rm m}^{-3}$

 $\theta = 2.5 - 30.4^{\circ}$ $\mu = 0.15 \text{ mm}^{-1}$ T = 150 KPlate, colourless $0.40 \times 0.34 \times 0.12 \text{ mm}$

Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 10954 reflections

Crystal data

$[Al(C_{19}H_{27}N_2)_2Cl] \cdot 0.675C_4H_8O$
$M_r = 677.95$
Monoclinic, $C2/c$
a = 22.042 (4) Å
b = 16.007 (3) Å
c = 12.852 (2) Å
$\beta = 115.396 \ (2)^{\circ}$
$V = 4096.6 (12) \text{ Å}^3$
Z = 4

Data collection

Bruker SMART APEXII area-detector	20863 measured reflections
diffractometer	4038 independent reflections
Radiation source: sealed tube	3577 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.023$
Detector resolution: 11.198 pixels mm ⁻¹	$\theta_{\rm max} = 26.0^{\circ}, \ \theta_{\rm min} = 2.1^{\circ}$
ω and φ scans	$h = -27 \rightarrow 27$
Absorption correction: multi-scan	$k = -19 \longrightarrow 19$
(SADABS; Sheldrick, 2008)	$l = -15 \rightarrow 15$
$T_{\min} = 0.872, \ T_{\max} = 0.982$	
Refinement	

Secondary atom site location: difference Fourier
map
Hydrogen site location: inferred from
neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.010P)^2 + 6.580P]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta ho_{ m max} = 0.28 \ { m e} \ { m \AA}^{-3}$
$\Delta \rho_{\min} = -0.25 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. C4H8O solvent showed strong disorder along 0, 1/2, z channels and was was treated using SQUEEZE procedure from *PLATON* software (Spek, 2009). See details in platon squeeze void *).

Total removed eletron density corresponds to 108 electrons which in turn corresponds to 2.7 THF molecues of solvent. H atoms were positioned from geometric consideration and refined as riding on the attached atom. U_{iso} of H atoms were constrained to be 20% larger than Ueqv of the attached atoms.

F 1		1	1	• , •		• 1 /	• • •	1. 1			18	21
Fractional	atomic	coordinates	and	isofronic	or	eauivalent	isofronic	displacem	ent	narameters	IA^{\cdot}	-1
1 / 401101141	aronne	coordinates		isonopie	01	equivalent	isonopie	anspiacem	Civ	par amerers	(**	/

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	0.5000	0.48000 (3)	0.2500	0.03380 (14)	
Al1	0.5000	0.61653 (4)	0.2500	0.02219 (14)	
N1	0.41384 (6)	0.62964 (7)	0.10908 (10)	0.0240 (3)	
N2	0.51084 (6)	0.68318 (7)	0.13434 (10)	0.0242 (3)	

C1	0.44562 (7)	0.67531 (9)	0.06238 (12)	0.0235 (3)
C2	0.41364 (7)	0.71313 (9)	-0.05510 (12)	0.0253 (3)
C3	0.42589 (8)	0.67932 (11)	-0.14389 (13)	0.0351 (4)
Н3	0.4554	0.6330	-0.1295	0.042*
C4	0.39503 (9)	0.71323 (12)	-0.25332 (14)	0.0419 (4)
H4	0.4030	0.6897	-0.3142	0.050*
C5	0.35279 (9)	0.78104 (12)	-0.27447 (14)	0.0407 (4)
Н5	0.3317	0.8041	-0.3498	0.049*
C6	0.34115 (9)	0.81544 (11)	-0.18641 (15)	0.0411 (4)
H6	0.3125	0.8626	-0.2009	0.049*
C7	0.37119 (8)	0.78128 (10)	-0.07669 (13)	0.0332 (4)
H7	0.3627	0.8046	-0.0163	0.040*
C11	0.34714 (7)	0.59362 (9)	0.04118 (12)	0.0255 (3)
H11	0.3193	0.6359	-0.0170	0.031*
C12	0.35123 (7)	0.51470 (10)	-0.02295 (13)	0.0300 (3)
H12A	0.3716	0.5287	-0.0761	0.036*
H12B	0.3805	0.4731	0.0332	0.036*
C13	0.28158 (8)	0.47686 (10)	-0.09147 (14)	0.0345 (4)
H13A	0.2535	0.5165	-0.1521	0.041*
H13B	0.2858	0.4249	-0.1296	0.041*
C14	0.24766 (9)	0.45747 (11)	-0.01311 (17)	0.0430 (4)
H14A	0.2731	0.4131	0.0421	0.052*
H14B	0.2017	0.4364	-0.0600	0.052*
C15	0.24402 (9)	0.53480 (12)	0.05303 (16)	0.0416 (4)
H15A	0.2251	0.5192	0.1077	0.050*
H15B	0.2135	0.5762	-0.0016	0.050*
C16	0.31316 (8)	0.57422 (11)	0.11943 (14)	0.0341 (4)
H16A	0.3083	0.6265	0.1564	0.041*
H16B	0.3418	0.5355	0.1810	0.041*
C21	0.55462 (7)	0.74495 (9)	0.11687 (12)	0.0254 (3)
H21	0.5263	0.7811	0.0502	0.030*
C22	0.60763 (8)	0.70273 (10)	0.08836 (14)	0.0325 (3)
H22A	0.5852	0.6718	0.0149	0.039*
H22B	0.6329	0.6619	0.1495	0.039*
C23	0.65675 (9)	0.76595 (12)	0.07778 (15)	0.0412 (4)
H23A	0.6924	0.7357	0.0658	0.049*
H23B	0.6326	0.8019	0.0097	0.049*
C24	0.68864 (9)	0.82035 (12)	0.18457 (16)	0.0443 (4)
H24A	0.7167	0.7853	0.2514	0.053*
H24B	0.7180	0.8625	0.1730	0.053*
C25	0.63515 (9)	0.86403 (11)	0.20905 (16)	0.0398 (4)
H25A	0.6094	0.9025	0.1449	0.048*
H25B	0.6568	0.8975	0.2804	0.048*
C26	0.58753 (8)	0.80053 (10)	0.22304 (13)	0.0316 (3)
H26A	0.5522	0.8304	0.2365	0.038*
H26B	0.6128	0.7652	0.2913	0.038*

	1 1					
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0398 (3)	0.0233 (3)	0.0315 (3)	0.000	0.0088 (2)	0.000
Al1	0.0253 (3)	0.0220 (3)	0.0178 (3)	0.000	0.0078 (2)	0.000
N1	0.0254 (6)	0.0251 (6)	0.0188 (6)	-0.0020(5)	0.0069 (5)	-0.0015 (5)
N2	0.0260 (6)	0.0251 (6)	0.0198 (6)	-0.0009(5)	0.0082 (5)	0.0020 (5)
C1	0.0282 (7)	0.0212 (7)	0.0203 (7)	0.0021 (6)	0.0096 (6)	-0.0031 (5)
C2	0.0258 (7)	0.0263 (7)	0.0218 (7)	-0.0010 (6)	0.0082 (6)	0.0009 (6)
C3	0.0413 (9)	0.0360 (9)	0.0278 (8)	0.0093 (7)	0.0146 (7)	0.0015 (7)
C4	0.0516 (10)	0.0513 (11)	0.0239 (8)	0.0052 (9)	0.0173 (8)	0.0010 (7)
C5	0.0434 (10)	0.0484 (11)	0.0256 (8)	0.0041 (8)	0.0102 (7)	0.0121 (7)
C6	0.0414 (10)	0.0410 (10)	0.0366 (9)	0.0148 (8)	0.0128 (8)	0.0122 (8)
C7	0.0374 (9)	0.0350 (9)	0.0276 (8)	0.0077 (7)	0.0141 (7)	0.0026 (7)
C11	0.0251 (7)	0.0258 (7)	0.0220 (7)	-0.0009 (6)	0.0069 (6)	-0.0025 (6)
C12	0.0284 (8)	0.0315 (8)	0.0278 (8)	-0.0007 (6)	0.0100 (6)	-0.0075 (6)
C13	0.0294 (8)	0.0326 (9)	0.0346 (8)	-0.0008 (7)	0.0072 (7)	-0.0128 (7)
C14	0.0360 (9)	0.0384 (10)	0.0539 (11)	-0.0121 (8)	0.0187 (8)	-0.0145 (8)
C15	0.0369 (9)	0.0465 (11)	0.0478 (10)	-0.0113 (8)	0.0242 (8)	-0.0144 (8)
C16	0.0360 (9)	0.0373 (9)	0.0319 (8)	-0.0083 (7)	0.0174 (7)	-0.0098 (7)
C21	0.0265 (7)	0.0261 (7)	0.0227 (7)	0.0002 (6)	0.0097 (6)	0.0036 (6)
C22	0.0385 (9)	0.0341 (9)	0.0306 (8)	0.0032 (7)	0.0202 (7)	0.0022 (7)
C23	0.0419 (10)	0.0496 (11)	0.0430 (10)	0.0018 (8)	0.0285 (8)	0.0074 (8)
C24	0.0344 (9)	0.0551 (12)	0.0463 (10)	-0.0106 (8)	0.0200 (8)	0.0049 (9)
C25	0.0397 (9)	0.0378 (9)	0.0412 (9)	-0.0117 (8)	0.0167 (8)	-0.0040 (8)
C26	0.0321 (8)	0.0330 (8)	0.0330 (8)	-0.0045 (7)	0.0170 (7)	-0.0048 (7)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

Cl1—Al1	2.1855 (9)	C13—C14	1.522 (2)
Al1—N2	1.9260 (12)	C13—H13A	0.9900
Al1—N2 ⁱ	1.9261 (12)	C13—H13B	0.9900
Al1—N1	1.9952 (12)	C14—C15	1.523 (2)
Al1—N1 ⁱ	1.9953 (12)	C14—H14A	0.9900
Al1—C1 ⁱ	2.3785 (14)	C14—H14B	0.9900
N1—C1	1.3213 (18)	C15—C16	1.528 (2)
N1—C11	1.4680 (18)	C15—H15A	0.9900
N2—C1	1.3407 (18)	C15—H15B	0.9900
N2—C21	1.4647 (18)	C16—H16A	0.9900
C1—C2	1.4935 (19)	C16—H16B	0.9900
C2—C7	1.386 (2)	C21—C22	1.524 (2)
C2—C3	1.390 (2)	C21—C26	1.527 (2)
C3—C4	1.384 (2)	C21—H21	1.0000
С3—Н3	0.9500	C22—C23	1.530 (2)
C4—C5	1.379 (3)	C22—H22A	0.9900
C4—H4	0.9500	C22—H22B	0.9900
C5—C6	1.378 (2)	C23—C24	1.519 (3)
С5—Н5	0.9500	C23—H23A	0.9900
C6—C7	1.388 (2)	С23—Н23В	0.9900
С6—Н6	0.9500	C24—C25	1.515 (2)

С7—Н7	0.9500	C24—H24A	0.9900
C11—C16	1.521 (2)	C24—H24B	0.9900
C11-C12	1 532 (2)	C_{25} C_{26} C_{26}	1.526(2)
C11—H11	1 0000	C25—H25A	0.9900
C12—C13	1 530 (2)	C25—H25B	0.9900
C12 - H12A	0.9900	C26—H26A	0.9900
C12—H12R	0.9900	C26—H26B	0.9900
	0.9900		0.9900
N2-A11-N2 ⁱ	112.73 (8)	C14—C13—H13B	109.5
N2—A11—N1	68.04 (5)	C12—C13—H13B	109.5
$N2^{i}$ All N1	104.92(5)	H13A—C13—H13B	108.1
N2—Al1—N1 ⁱ	104.92 (5)	C_{13} C_{14} C_{15}	111.23 (14)
$N2^{i}$ All $N1^{i}$	68 04 (5)	C13—C14—H14A	109.4
$N1$ — $A11$ — $N1^{i}$	167.92.(8)	C15—C14—H14A	109.4
N_2 —All—Cll	123 64 (4)	C_{13} C_{14} H_{14B}	109.4
$N2^{i}$ All $-C11$	123.64 (4)	C_{15} C_{14} H_{14B}	109.1
N1 - A11 - C11	96.04 (4)	$H_{14} - C_{14} - H_{14}B$	108.0
$N1^{i}$ $A11$ $C11$	96.04 (4)	C14-C15-C16	111 64 (14)
$N_2 = \Delta 11 = C 1^{i}$	112 83 (5)	C_{14} C_{15} H_{15A}	109.3
$N2^{i}$ All $C1^{i}$	34 30 (5)	$C_{14} = C_{15} = H_{15A}$	109.3
$\frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1}$	138.45.(5)	C14 $C15$ $H15R$	109.3
$N1^{i} A11 C1^{i}$	130.43(3)	C16 C15 H15B	109.3
$\begin{array}{ccc} \mathbf{N}\mathbf{I} &\mathbf{A}\mathbf{I}\mathbf{I} & -\mathbf{C}\mathbf{I} \\ \mathbf{C}\mathbf{I}\mathbf{I} & \mathbf{A}\mathbf{I}\mathbf{I} & \mathbf{C}\mathbf{I}\mathbf{I} \end{array}$	33.74(3)	1154 $C15$ $H15D$	109.3
C1 = N1 = C1	113.30(4) 122.56(12)	C11 C16 C15	100.0
CI = NI = CII	122.30(12)	$C_{11} = C_{16} = U_{16}$	111.78 (15)
$C_1 = N_1 = A_{11}$	69.24(9)	C15 $C16$ $U16A$	109.3
CII—NI—AII	144.99 (10)	C11 - C10 - H10A	109.5
C1 = N2 = C21	122.00(12)		109.3
CI—N2—AII	91.67 (9)		109.3
C2I—N2—AII	145.10 (9)	H10A - C10 - H10B	107.9
NI-CI-N2	111.05(12) 124.94(12)	$N_2 = C_2 I = C_2 Z_2$	111.15(12)
NI = CI = C2	124.84 (13)	$N_2 = C_2 I = C_2 \delta$	110.37 (11)
$N_2 - C_1 - C_2$	124.11 (13)	$C_{22} = C_{21} = C_{26}$	110.72 (12)
$C/-C_2-C_3$	119.63 (14)	N2—C21—H21	108.2
C/C2C1	120.46 (13)	C22—C21—H21	108.2
C3—C2—C1	119.91 (13)	C26—C21—H21	108.2
C4—C3—C2	119.85 (15)	C21—C22—C23	111.88 (13)
С4—С3—Н3	120.1	С21—С22—Н22А	109.2
С2—С3—Н3	120.1	C23—C22—H22A	109.2
C5—C4—C3	120.34 (16)	C21—C22—H22B	109.2
C5—C4—H4	119.8	C23—C22—H22B	109.2
C3—C4—H4	119.8	H22A—C22—H22B	107.9
C6—C5—C4	120.03 (15)	C24—C23—C22	111.69 (13)
С6—С5—Н5	120.0	С24—С23—Н23А	109.3
C4—C5—H5	120.0	С22—С23—Н23А	109.3
C5—C6—C7	120.09 (16)	C24—C23—H23B	109.3
С5—С6—Н6	120.0	С22—С23—Н23В	109.3
С7—С6—Н6	120.0	H23A—C23—H23B	107.9
C2—C7—C6	120.05 (15)	C25—C24—C23	110.63 (14)
С2—С7—Н7	120.0	C25—C24—H24A	109.5

С6—С7—Н7	120.0	C23—C24—H24A	109.5
N1-C11-C16	109.79 (12)	C25—C24—H24B	109.5
N1—C11—C12	111.63 (12)	C23—C24—H24B	109.5
C16—C11—C12	110.28 (13)	H24A—C24—H24B	108.1
N1-C11-H11	108.4	C24—C25—C26	110.66 (14)
C16—C11—H11	108.4	C24—C25—H25A	109.5
C12—C11—H11	108.4	С26—С25—Н25А	109.5
C13—C12—C11	111.11 (12)	С24—С25—Н25В	109.5
C13—C12—H12A	109.4	C26—C25—H25B	109.5
C11—C12—H12A	109.4	H25A—C25—H25B	108.1
C13—C12—H12B	109.4	C25—C26—C21	111.72 (13)
C11—C12—H12B	109.4	C25—C26—H26A	109.3
H12A—C12—H12B	108.0	C21—C26—H26A	109.3
C14—C13—C12	110.88 (13)	C25—C26—H26B	109.3
C14—C13—H13A	109.5	C21—C26—H26B	109.3
C12—C13—H13A	109.5	H26A—C26—H26B	107.9
C11—N1—C1—N2	-164.48 (12)	C1—N1—C11—C12	78.85 (17)
Al1—N1—C1—N2	-0.02 (11)	Al1—N1—C11—C12	-73.3 (2)
C11—N1—C1—C2	15.3 (2)	N1-C11-C12-C13	178.91 (13)
Al1—N1—C1—C2	179.75 (13)	C16-C11-C12-C13	56.57 (17)
C21—N2—C1—N1	-165.84 (12)	C11—C12—C13—C14	-56.96 (18)
Al1—N2—C1—N1	0.02 (12)	C12-C13-C14-C15	55.59 (19)
C21—N2—C1—C2	14.4 (2)	C13—C14—C15—C16	-54.5 (2)
Al1—N2—C1—C2	-179.75 (12)	N1-C11-C16-C15	-178.78 (13)
N1—C1—C2—C7	73.0 (2)	C12-C11-C16-C15	-55.38 (18)
N2-C1-C2-C7	-107.29 (17)	C14—C15—C16—C11	54.7 (2)
N1—C1—C2—C3	-106.33 (18)	C1—N2—C21—C22	-112.74 (15)
N2-C1-C2-C3	73.4 (2)	Al1—N2—C21—C22	91.30 (18)
C7—C2—C3—C4	-0.8 (2)	C1—N2—C21—C26	124.01 (14)
C1—C2—C3—C4	178.53 (15)	Al1—N2—C21—C26	-31.9 (2)
C2—C3—C4—C5	0.8 (3)	N2-C21-C22-C23	-176.17 (12)
C3—C4—C5—C6	0.0 (3)	C26—C21—C22—C23	-53.12 (17)
C4—C5—C6—C7	-0.8 (3)	C21—C22—C23—C24	54.26 (19)
C3—C2—C7—C6	0.0 (2)	C22—C23—C24—C25	-56.0 (2)
C1—C2—C7—C6	-179.31 (15)	C23—C24—C25—C26	57.18 (19)
C5—C6—C7—C2	0.8 (3)	C24—C25—C26—C21	-57.18 (19)
C1—N1—C11—C16	-158.54 (13)	N2-C21-C26-C25	178.32 (13)
Al1-N1-C11-C16	49.3 (2)	C22—C21—C26—C25	54.82 (17)

Symmetry code: (i) -x+1, y, -z+1/2.